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ACCOMPLISHMENTS

In the period of October 1, 1992 to September 30, 1993, the Principal Investigator (PI)
with the assistance of three graduate students have achieved the following accomplishments
under Grant No. NAG-1-648. This grant is jointly supported by the NASA Langley Research
Center, Aeroelastic Analysis and Optimization Branch (Monitors: Dr. Samuel R. Bland and
Dr. Woodrow Whitlow, Jr—Branch Head) and the Air Force Office of Scientific Research,

Aeronautics Directorate — Unsteady Aerodynamics Program (Monitor: Major Daniel Fant.).
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1.1. Kandil, O. A. and Flanagan, M. W., “Vertical Tail Buffet in Vortex Breakdown Flows,”
Fifth International Symposium on Computational Fluid Dynamics Sendai, Japan, August

31-September 3, 1993, Vol. 1, pp. 432-437, (a copy is enclosed).

1.2. Kandil, O. A., Kandil, H. A. and Massey, S. J., “Simulation of Tail Buffet Using
Delta Wing-Vertical Tail Configuration,” AIAA 93-3688-CP, AIAA Atmospheric Flight
Mechanics Conference, Monterey, CA, August 9-11, 1993, pp. 566577, (a copy is

enclosed).
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Conference, Monterey, CA, August 11-13, 1993, Vol. I, pp. 582-596, (a copy is
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Kandil, O. A., “Simulation of Vertical Tail Buffet,” NAS Technical Summaries Report,
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35th SDM Conference, Hilton Head, SC, April 18-21, 1994.

Kandil, O. A., Kandil, H. A. and Kalisch, M., “Pitching Oscillation of a 65—degree Delta
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II1. Conference Presentations and Activities:

I11.1. “Simulation of Tail Buffet Using Delta Wing-Vertical Tail Configuration,” AIAA

Atmospheric Flight Mechanics Conference, Monterey, CA, August 9-11, 1993. Prof.

0. A. Kandil gave the presentation.

I11.2. “Vertical Tail Buffet in Vortex Breakdown Flows,” Fifth International Symposium on

Computational Fluid Dynamics, Sendai, Japan, August 31-September 3, 1993. Mr.

Mark W. Flanagan gave the presentation.
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“Shock-Vortex Interaction Over a 65-Degree Delta Wing in Transonic Flow,” AIAA
24th Fluid Dynamics Conference, Orlando, FL, July 6-9, 1993. Prof. O. A. Kandil

gave the presentation.

“Supersonic Vortex Breakdown Over a Delta Wing in Transonic Flow.” AIAA 11th
Applied Aerodynamics Conference, Monterey, CA, August 9-11, 1993. Prof. O. A.

Kandil gave the presentation.

Chairing a session titled, “Vortex Dominated Flows 1.” AIAA 24th Fluid Dynamics

Conference, Orlando, FL, July 6-9, 1993. Prof. O. A. Kandil chaired the session.

“Prediction and Control of Slender Wing Rock,” 18th ICAS Congress, Beijing, People’s

Republic of China, September 21-25, 1992. Prof. O. A. Kandil gave the presentation.

“Simulation of Vertical Tail Buffet,” Seminar Series, School of Mechanical and
Aerospace Engineering, Old Dominion University, Norfolk, VA, September 24, 1993.

Prof. O. A. Kandil gave the presentation.

Chairing a session titled, “Flow Control,” [IUTAM Symposium on Fluid Dynamics of
High Angle of Attack, University of Tokyo, Japan, September 13-17, 1992. Prof. O.

A. Kandil chaired the session.

Invited by the Japanese Institute of Space and Astronautical Sciences to give a seminar
on “CFD/Dynamics/Control Interaction,” Tokyo, Japan, September 18, 1992. Prof. O.

A. Kandil gave a presentation.






IV. Interaction with Other Federal Agencies:

1. AFOSR: A report has been submitted to Major Daniel Fant, manager of the unsteady
program at the AFOSR on September 7, 1993. The report summarizes the important
research results in supersonic vortex breakdown on delta wings and vertical-tail buffet
problem. It also covers the concepts and ideas that benefit air force applications. It
covers the period of October 1-September 30, 1993. Major Fant is supporting part of the

present work for the FY 1994 at $35 K.

2. Numerical Aerodynamics Simulation:
A proposal for computing resources has been submitted to the NAS facilities at NASA
Ames in November 1992. The proposal has been approved for 1,100 hrs of computational
time. Additional 500 hrs have been added to our account in July 1993. A summary has

been submitted in July 1993 for publication in the NAS Annual Summaries.

3. The Principal Investigator helped researchers at two branches at NASA Langley and a
researcher at the Air Force Academy in Colorado to correct boundary conditions for

unsteady flow calculation in the computer code “CFL3D”.
V. Graduate Students:

The Principal Investigator has three graduate students who are working on their M.S. thesis and
Ph.D. dissertation. They are supported under this grant with the funds from NASA Langley

Research Center and AFOSR. These students are:

V.1. Mr. Mark W. Flanagan (US Citizen): He is supported under the present grant and a
supplement from the Aerospace department. He is expected to defend his M.S. thesis
in October 1993. He thesis is titled “Computational Simulation of Vertical Tail Buffet

in a Configured Duct.” He is staying for his Ph.D. degree in the Aerospace Engineering
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Department. His Ph.D. dissertation will focus on simulation and optimization control

of three-dimensional tail buffet phenomenon.

Mr. Steven J. Massey (US Citizen): He is supported under the present grant and a
supplement from the Aerospace department. He is expected to defend his M.S. thesis in
March, 1994. His thesis is titled “Computational Simulation of Tail Buffet Using a Delta
Wing-Vertical Tail Configuration.” He is staying for his Ph.D. dissertation which will
focus on simulation and optimizational control of tail buffet for bending and torsional

responses.

Ms. Margaret Kalisch (US Citizen): She joined our research group in May 1993.
She has a M.S. degree from the Naval Postgraduate School in Monterey, CA. She is
working on her Ph.D. degree in Aerospace Engineering. She is currently supported
under the present grant. Her Ph.D. dissertation will focus on multi-mode coupling

(roll/pitch and/or yaw) of a delta wing during vortex breakdown in transonic regime.
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VERTICAL TAIL BUFFET IN VORTEX BREAKDOWN FLOWS

Osama A. Kandil* and Mark W. Flanagan*

*Aerospace Engineering Department, Old Dominion University, Norfolk, Virginia 23529, USA

Computational simulation of vertical tail buffet has been accomplished using a simple generic model. The
model consists of a vortex-breakdown flow in a configured circular duct and a vertical fiat plate which is placed
as a cantilever downstream of the vortex-breakdown flow. Vortex-breakdown flow is generated through a shock
wave at the duct inlet. The unsteady, compressible, full Navier-Stokes (NS) equations and the aeroelastic
equation for bending vibrations are solved sequentially to obtain the unsteady vortex-breakdown loads on the
plate and its aeroelastic deflections, respectively. The grid displacements are obtained using an interpolating

equation.
1. INTRODUCTION

The ability of modern fighter aircraft to fiy and
maneuver at high angles of attack is of prime im-
portance. This capability is achieved, for example
in the F/A-18 Fighter, through the combination of
the leading-edge extension (LEX) for a delta wing
and the use of a single or twin vertical tail(s). How-
ever, at some flight conditions, the vortices emanating
from the highly-swept LEX breakdown before reach-
ing the vertical tails which get bathed in a wake of
highly unsteady, turbulent swirling flow. The vortex-
breakdown flow produces unsteady loads which in
turn produce severe buffeting of the vertical tails and
have led to their premature fatigue failure. Exper-
imental research work has been conducted on dif-
ferent models of the F/A-18 to understand the flow
physics, measure the tails’ response [1-4] and alle-
viate the buffet phenomenon [5]. Cole, Moss and
Doggett 6] have found that the buffet response of a
1/6 size model of the F-18 airplane occurs in the first
bending mode.

The crucial point in predicting the buffet charac-
teristics is the knowledge of the driving unsteady air
joads associated with the vortex breakdown flow. Ed-
wards [7] presented a good assessment of the compu-
tational cost of this problem for a full fighter aircraft.
The principal author of this paper has proposed two
simple models to simulate and study the vertical-tail
buffet problem at a substantially reduced computa-
tional cost in comparison with the cost of solving for
the flow around a full fighter aircraft. The basic con-
cept behind these models is to be able to generate
an unsteady, vortex-breakdown flow and to place a

vertical tail, which is cantilevered, downstream of the
vortex-breakdown flow. In this way, the buffet prob-
lem is isolated from the whole configuration and the
computational resources are focused on a small region
for high resolution. The first proposed model con-
sists of a configured duct in which the inlet swirling
flow is forced to breakdown either through a shock
wave [8] (for transonic and supersonic inlet flows)
or through a gradual adverse pressure gradient that is
generated by the duct wall (for subsonic iniet swirling
flows). Downstream of the breakdown flow, a verti-
cal cantilevered tail is placed. In the second model,
the configuration consists of a delta wing at a criti-
cal angle of attack which produces breakdown of the
leading-edge vortex cores. Downstream of the break-
down flow, a vertical single or twin-tail configuration,
which is fixed as a cantilever, is placed.

Computational simulation using the second
model has been presented in Ref. [9] by Kandil,
Kandil and Massey. In the present paper, the first
model is used for the computational simulation of ver-
tical tail buffet. The model consists of a configured
circular duct with supersonic swirling flow which is
forced to breakdown through a shock wave at the
inlet. Downstream of the vortex-breakdown flow a
plate is placed as a cantilever which is fixed at the
duct wall. The initial flow conditions are obtained by
solving the unsteady, compressible, full NS equations
accurately in time while the plate is assumed to be
rigid. Next, the NS equations are sequentially solved
with the aeroelastic equation of bending vibrations
for the plate deflection. The grid is displaced using
an interpolation equation.



2. FORMULATION AND
COMPUTATIONAL SCHEME

The present multidisciplinary problem is solved
using three sets of equations which consist of the
unsteady, compressible, full NS equations; the aeroe-
lastic equation for bending vibrations of a cantilever
beam, which approximates the plate bending vibra-
tions, and an interpolation equation to move the grid
due to the plate deflection. The NS equations are
given in Ref. [9] and are solved using an implicit,
upwind, flux-difference splitting (Roe scheme), finite-
volume scheme. The aeroelastic equation for the
bending vibrations is given by

4 2
aw+m-6—l:=N(r,t) O]

Elgs ot

where r is the radial distance from the fixed sup-
port along the beam length /;, E the modulus of
elasticity, I the area moment of inertia, m the mass
per unit length and N is the net surface pressure
force per unit length. The dimensionless form of
w, r, E, I and m are given by
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where r is the duct inlet radius, p, the freestream
air density, a’_ the freestream speed of sound, d* the
plate thickness, b~ the plate width and the “*” denotes
dimensional quantities. The geometrical and natural
boundary conditions are given by

b 2 ] 3 !
w(0.0) = 220,60 = L8 0= Z2(.0 =0
or or? or3 3)
The solution to Eq. (1) is given by
w(r.t) =Y 6;(r)g;(1) )
E

substituting Eq. (4) into Eq. (1) and using the
Galerkin method, the equation for the generalized co-
ordinates, g;(t), is obtained. The solution for ¢;(¢)
is obtained either by using a convolution integral or
by using a four-stage Runge-Kutta scheme. For the
present problem, six natural modes of vibration, ¢;,

are used. More details of the solution are given in
Ref. [9].

For the grid displacements, the following inter-
polation equation is used for the x-coordinate which
is measured from the plate surface

n n n z?. T

a:,-,;."l =zl + w'._j+l cos (Xr (:r , 5) *)
where X, or: is the maximum z coordinate (mea-
sured from the plate surface) of a grid point at the
right (r) or left (!) boundary of the computational
domain. With Eq. (5), a point on the plate is dis-
placed by the total plate deflection and a point at
either boundary is not displaced.

3. COMPUTATIONAL RESULTS

A configured, circular duct which is similar to
the one used by the senior author in Ref. [8] is em-
ployed for the present problem. The duct length here
is 3.9 dimensionless units. It is configured such that
a supersonic inlet flow produces a shock at the in-
let section which is strong enough to break down the
inlet swirling flow. A half of the duct axial plane
is shown in Fig. 1. As a cantilevered plate at the
duct wall of length I, = 0.4 is placed at the axial
station z = 2.0, multi-block grids are used. There
are three blocks of grids; the first is to the left of
the plate (0 < = < 2.0, r > 0.6) which consists
of 182x48 grid points in the axial and radial direc-
tions, respectively; the second is to the right of the
plate (2.0 < z < 3.9, r > 0.6) which consists of
120x 48 grid points in the axial and radial directions,
respectively; the third extends from the center line to
the level of plate tip (0 < r < 0.6, 0 <z £3.9)
which consists of 302x 64 grid points in the axial and
radial directions, respectively. The minimum radial
grid size at the center line is Argin = 3.5 X 10-3
and the minimum axial grid size at the plate surface
is AZmin = 3 x 10~%. Figure 1 shows the grid used.

The problem is solved for a quasi-axisymmetric
flow by forcing the components of the flowfield vec-
tor to be equal on two meridian planes in close prox-
imity of each other. The inlet flow Mach number is
1.75 and the Reynolds number is 10° (based on the
duct inlet radius). The inlet profile for the tangential
velocity is given by

w k. i r? 6
oo (7)) o



where Uy, = 1.74, rm = 0.2 and k, = 0.1. The
maximum U‘”—, swirling ratio 3, is at r = 0.224
and its value is kept at 0.32. The radial velocity,
v, at the inlet is set equal to zero and the radial
momentum equation is integrated to obtain the inlet
pressure profile. Finally, the density p is obtained
from the definition of the speed of sound for the
inlet flow. With this compatible set of profiles, the
computations are carried out accurately in time with
At = 0.001 and without inserting the plate until? =9
dimensionless time units.

The boundary conditions for this step consists
of the inflow Riemann-invariant conditions, solid
boundary conditions at the duct wall, symmetry con-
ditions at the centerline and extrapolating the flow
variables at the duct exit boundary. Figure 2 shows
two snapshots of the streamlines and Mach contours
at ¢ = 3and t = 8. It is noticed that an oscillating
shock developed at the duct inlet (see Mach contours)
and the unsteady vortex-breakdown bubbles devel-
oped behind the shock. The present solution is the
same as that obtained earlier with one block of grid.

3.1 initial Conditions

For t > 9, a flat plate is impulsively inserted at
= 2.0 and is cantilevered at the duct wall. The
computations are carried out accurately in time with
At = 0.001 and with the plate being considered as
a rigid boundary. Solid boundary conditions are en-
forced on the plate surfaces. Figure 3 shows snap-
shots of the streamlines and the Mach contours at
t = 10, 11, 17, 23, 29 and 32. The streamlines
show the continuous evolution, convection, merg-
ing and shedding of vortex-breakdown bubbles be-
hind the oscillating inlet shock. They also show an
unsteady, separated vortical region behind the plate.
The Mach-contours figures show the oscillating shock
at the inlet and unsteady shocks between the plate tip
and the duct wall. Having produced a strong vortex-
breakdown flow ahead and behind the plate, this so-
lution serves as initial conditions for the next step.
The next step is to couple the computational fluid
dynamics with the aeroelastic equation for bending
vibrations of the plate along with Eq. (5) for the grid
displacements.

3.2 Vortex-Breakdown Flow and Plate Deflection
For t > 34, the plate is allowed to deflect in

bending by solving Eq. (1) with the force per unit
length, N(r,t), obtained from the net surface pres-
sure on the plate. Since the plate is oscillating, the
kinematical boundary conditions are based on the rel-
ative velocity of the fluid with rcspect to the plate.
The dynamical boundary condition 3 % on the plate
is no longer equal to zero. The pressure gradient is
modified to $£ 8n = —pa, - N, where g, is the plate

acceleration which is equal to 3,—5- lpl .. and 7 is the
unit normal to the plate. The computations are carried
out accurately in time with At = 0.0001. The plate
dimensions are !, = 0.4, d = 0.02 and b = 0.157.
Its modulus of elasticity and its mass per unit length
are £ = 0.499 x 10 and m = 7.177, respectively.
Figure 4 shows snapshots of the streamlines and
Mach contours during one cycle of periodic response
of the plate. The snapshots are marked by the num-
bers 1, 2, 3 and 4 which correspond to the instants 1,
2, 3 and 4 shown on Fig. 5. Figure 5 shows the force
distribution on the plate, N, at different time levels
(from t = 35 to t = 35.5). It also shows the plate
defiections at its midpoint and its tip. It is noticed
that the period of oscillation is 0.3 time units which
corresponds to a frequency of 20.94. The maximum
tip deflection of the plate is 2.5 x 107*, which is of the
same order as that of the axial minimum spacing of
the grid at the plate surface.

4. CONCLUDING REMARKS

A simple generic model is introduced to sim-
ulate the vertical tail buffet problem due to vortex-
breakdown flows. The model consists of a config-
ured circular duct which produces unsteady vortex-
breakdown flow for the inlet supersonic swirling flow
due to an oscillating shock. Downstream of the
vortex-breakdown flow, a plate is placed as a can-
tilever at the duct wall. The problem is solved us-
ing three sets of equations which include the NS
equations, the aeroelastic equation for bending vi-
brations and an equation for the grid displacements.
The equations are solved sequentially using time ac-
curate stepping to obtain the force distribution on
the plate, the plate deflections and the grid displace-
ments, respectively. It has been shown that the plate
reaches periodic response in bending in a short time.
The present work represents a proof of concept for
a generic model to simulate vertical tail buffet. The
next step is to consider the three-dimensional flow
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SIMULATION OF TAIL BUFFET USING DELTA WING-VERTICAL TAIL CONFIGURATION

Osama A. Kandil*, Hamdy A. Kandil**, and Steven J. Massey***
0O1d Dominion University, Norfolk, VA 23529

ABSTRACT

Computational simulation of the vertical tail buf-
fet problem is accomplished using a deita wing-
vertical tail configuration. Flow conditions are se-
lected such that the wing primary-vortex cores expe-
rience vortex breakdown and the resulting flow in-
teracts with the vertical tail. This multidisciplinary
problem is solved successively using three sets of
equations for the fluid flow, aeroelastic deflections
and grid displacements. For the fluid dynamics part,
the unsteady, compressible, full Navier-Stokes equa-
tions are solved accurately in time using an im-
plicit, upwind, flux-difference splitting, finite-volume
scheme. For the aeroelastic part, the aeroelastic equa-
tion for bending vibrations is solved accurately in
time using the Galerkin method and a convolution
integral solution. The grid for the fluid dynamics
computations is updated every few time steps using
an interpolation equation. The computational appli-
cations include a delta wing of aspect ratio 1 and two
cases for the vertical tail. The first case is for a tail
of aspect ratio of 2 located 0.5 chord length from the
wing trailing edge. The second case is for a tail of
aspect ratio of 1 located at the wing trailing edge.

INTRODUCTION

Recently, the design of modern fighter aircraft has
been focused on high angle of attack maneuverabil-
ity at high loading conditions, renewing the interest
in the tail buffet problem. For these fighters, the abil-
ity to fly and maneuver at high angles of attack is of
prime importance. This capability is achieved, for ex-
ample in the F/A-18 fighter, through the combination
of a leading-edge extension (LEX) and a delta wing
and the use of vertical tails. The LEX maintains lift at
high angles of attack by generating a pair of vortices
that trail aft over the top of the aircraft. The vortex
entrains air over the vertical tails to maintain stability

* Professor. Emment Scholar and Chairman of Aerospace Engineering
Dept.. Associate Fellow ATAA.
*- Research Associate. Aerospace Engineering Dept.. Member AIAA
*** Graduate Research Assistant, Aerospace Engincering Dept., Member
AlAA.

Copyright © 1993 by Osama Kandil. Published by The American institute
of Aeronautics and Astronautics, Inc. with permission

of the aircraft. This combination of LEX and verti-
cal tails leads to the aircraft excellent high angle of
attack performance. However, at some flight condi-
tions, the vortices emananting from the highly-swept
LEX of the delta wing breakdown before reaching the
vertical tails which get bathed in a wake of highly-
turbulent, swirling flow. The vortex-breakdown flow
produces severe buffet on the vertical tails and has
led to their premature fatigue failure. Buffeting of
the vertical tails of the F/A-18 fits into this category.
During flight operations of this airplane large vibra-
tions of the vertical tails have been observed.

Sellers et al.! conducted some three-component
velocity surveys for a YF-17 model (a configura-
tion similar to the F-18) at low speeds. Their re-
sults clearly show that at 25° angle of attack the
vortex produced by the LEX experiences breakdown
and that there are large fluctuations in the velocity in
the vicinity of the vertical tails. They measured rms
fluctuations as high as 40% of the freestream stream
velocity. Erickson, et al.2 presented a wind tunnel
investigation of the F/A-18 aircraft. The investiga-
tion focused mainly on the measurements of steady
forces and pressures on the LEX and laser light sheet
measurements of the vortex structure. Some water
tunnel studies conducted by Wentz? using an F-18
mode! also showed that the vortex produced by the
LEX of the wing breaks down ahead of the vertical
tails at angles of attack of 25° and higher. If these
flows contain substantial energy at frequencies corre-
sponding to the lower modes of vibration of the tail
structure, significant structural response can result.

Another wind tunnel investigation of buffeting is
published by Lee and Brown*. The buffeting of the
vertical fin of a rigid 6% model of the F/A-18 has
been investigated. Unsteady pressure measurements
on the vertical fin were conducted and the vortex flow
structure behind the fin was studied. The study was
carried out with LEX fences on and off to conclude
that the LEX fence has a small influence on the
steady balance measurements such as lift and pitching
moment.



Rao, Puram and Shah® proposed two aerodynamic
concepts for alleviating high-alpha tail buffet charac-
teristics of LEX vortex dominated twin tail fighter
configurations. These concepts were explored in low
speed tunnel tests on generic models via flow visu-
alizations, 6-component balance measurements and
monitoring of tail dynamics. Passive dorsal-fin exten-
sions of the vertical tails, and an active LEX arrange-
ment with up-defiected edge sections were evaluated
as independent means of re-structuring the adverse
vortical flow environment in the tail region. Each
of these techniques successfully reduced the buffet.
Used in combination, the two concepts indicated sig-
nificant tail buffet relief with relatively minor impact
on the high a configuration aerodynamics.

Cole, Moss and Doggett6 tested a rigid, 1/6 size,
full-span model of an F-18 airplane that was fit-
ted with flexible vertical tails of two different stiff-
ness. Vertical-tail buffet response results were ob-
tained over the range of angles of attack from -10°
to +40°, and over the range of Mach numbers from
0.3 to 0.95. Their results indicated that the buffet
response occurs in the first bending mode, increases
with increasing dynamic pressure and is larger at M
= 0.3 than that at a higher Mach number.

So far, there are no available theoretical or com-
putational methods to predict and control the aeroe-
lastic buffet characteristics of vertical tails. The cru-
cial point in predicting the buffet characteristics is
the knowledge of the driving unsteady airloads asso-
ciated with flow separations and vortex breakdown.
Edwards’ presented a good assessment of the compu-
tational cost of this problem for a full fighter aircraft.
The principal author of this paper has proposed two
simple models to simulate and study the vertical-tail
buffet problem at a substantially reduced computa-
tional cost in comparison with the cost of solving for
the flow around a full fighter aircraft. The basic con-
cept behind these models is to be able to generate
an unsteady, vortex-breakdown flow and to place a
cantilevered vertical tail, downstream of the vortex-
breakdown flow. In this way, the buffet problem is
isolated from the whole configuration and the com-
putational resources are focused-on a-small region for
high resolution. The first proposed model consists of
a configured duct in which the inlet swirling flow is
forced to breakdown either through a shock wave®
(for transonic and supersonic inlet flows) or through
a gradual adverse pressure gradient that is generated
by the duct wall (for subsonic inlet swirling flows).

Downstream of the breakdown flow, a'vertical can-
tilevered tail is placed. In the second model, the con-
figuration consists of a delta wing at a critical angle
of attack which produces breakdown of the leading-
edge vortex cores’. Downstream of the breakdown
flow, a vertical single or twin-tail configuration which
is fixed as a cantilever is placed.

In the present paper, the second model is con-
sidered for the computational simulation. The model
consists of a delta wing of aspect ratio 1 and two cases
of a single vertical tail. In the first case, the tail is of
aspect ratio 2 and is placed at 0.5 root-chord length
from the wing trailing edge. In the second case, the
tail is of aspect ratio 1 and is placed at the wing trail-
ing edge. The tail is cantilevered at the lower side and
the configuration is pitched at a 35° angle of attack.
The flow Mach number and Reynolds number are 0.4
and 10,000, respectively. The problem is solved se-
quentially using the time-accurate integration of the
laminar, unsteady, compressible Navier-Stokes equa-
tions, the aeroelastic equation for a beam in a bending
mode and an equation to update the locations of grid
points.

FORMULATION

The formulation of the problem consists of three
sets of governing equations along with certain ini-
tial and boundary conditions. The first set is the
laminar, unsteady, compressible, full Navier-Stokes
equations. The second set consists of the aeroelas-
tic equations for the vibration modes which could be
coupled bending and torsion modes. In the present
paper, only the bending vibration is considered with-
out structural damping or nonlinearities, which could
be added in the future without any difficulty. The
third set consists of an equation for calculating the
grid displacements due to the tail deflections. The
literature shows various methods for computing the
grid displacements. The simplest methods use sim-
ple interpolation functions such that the grid points
adjacent to the aeroelastic surface move with the sur-
face while the grid points at the computational-region
boundary do not move!®!!  In the more advanced
methods for moving the grid, the grid is simulated
as a static!>" or dynamic truss. The unsteady,
linearized, Navier-displacement equations have also
been used successfully by Kandil et al. to move the
grid dynamically!3-!6. In the present paper, we use
simple grid interpolation to move the grid. Next, the
governing equations for each set are given:



Fluid Flow:

The conservative form of the dimensionless,
unsteady, compressible, full NS equations in
terms of time-dependent, body-conformed coordi-
nates €1,€2 and £ is given by
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The first element of the three momentum elements of
Eq. (5) is given by
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The second and third elements of the momentum
elements are obtained by replacing the subscript I,
everywhere in Eq. (7), with 2 and 3, respectively.
The last element of Eq. (5) is given by
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The reference parameters for the dimensionless form
of the equations are ¢*, Geo. €* /0o, Poc and px for
the length, velocity, time, density and molecular vis-
cosity, respectively. The Reynolds number is defined
as Re = px Voo ©* /i, Where ¢* is root-chord length
of the wing. The pressure, p, is related to the total
energy per unit mass and density by the gas equation

1
p=(1- 1)p[e - 5(ud+ e+ u%)] 9)
The viscosity is calculated from the Sutherland law

p= T3/2(11:€,),C = 0.4317

and the Prandtl number P, = 0.72. In Eqgs. (1)-(8),
the indicial notation is used for convenience.

(10)

Aeroelastic Deflections:

In the present paper, the vertical rectangular tail
is treated as a homogeneous, uniform, cantilevered
beam with rectangular section. For bending vibration,
the dimensionless equation for the deflection w(z,t)
is given by
*w

otw
5?1-+m—5t—2-—1\7(2,t) (i

where z is the vertical distance from the fixed sup-
port along the beam length, I, E the modulus of
elasticity, I the area moment of inertia, m the mass
per unit length and N is the net surface pressure
force per unit length. The dimensionless form of
w, z, E, I, mand N are given by

Er

w* z* E*
w:—T’z:-—‘,E‘—‘ « %2’

¢ ¢ Pocloc

1 dt:’bt * N*
I=—Z—m= :n*?’Nz . %2 % (12)
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where ¢* is the wing root-chord length, p%. the
freestream air density, a’. the freestream speed of
sound, d* the tail thickness, b* the tail chord length,
N* the net surface pressure force per unit length and
the “*” denotes dimensional quantities. The geomet-
rical and natural boundary conditions are given by

2 3
wio.t) = 2o = T (1) = TR0 =0
- - - (13)
The solution to Eq. (11) is given by
w(z,) = Y ;(2)g;(t) (14)
i=1



where ¢;(z) are comparison functions which satisfy
the boundary conditions, and they are given by the
natural modes of vibration
cosh 8z — cos 3z
cosh Sl + cos ﬂjh
(15)
and f3; are the eigenvalues obtained from the solution
of cos fl; cosh 8l = —1. Substituting Eq. (14) into
Eq. (11) and using the Galerkin method, the follow-
ing equation is obtained for the generalized coordi-
nates g;(1):
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m,; = elements of mass matriz
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k.j = elements of stif fness matriz
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Since m, I and F are constants and ¢, are orthogo-
nal, the mass and stiffness matrices are diagonal and
the set given by Eq. (16) is decoupled. Hence, the
solution to the present simple case reduces to the so-
lution of a decoupled set of second-order, ordinary-
differential equations, where each equation corre-
sponds to one of the natural modes. The solution
is obtained either by using a closed-form convolution
integral or by using a four-stage Runge-Kutta scheme.
For the jth mode shape, Eq. (16) becomes

kee  No(1)
9; =

Mpr Merr

(no summation over r)

(7
The convolution integral solution for this equation is
given by

g; +

1 b
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Wwr
where w? = %{-L = %ii,qj(O) is the initial displace-

ment and q]'(O) is the initial velocity.

If m, I and E are functions of =, then Eq. (16)
will be a coupled set and one needs to use a normal-
mode shape transformation from g(t) to 7(t) to de-
couple the resulting set. For a coupled bending and
torsion vibration, the present procedure can be gen-
eralized to obtain the solution. For the aeroelastic
equations in the latter case, the solution is obtained
using the four-stage Runge-Kutta scheme.

Grid Displacements:

In the present paper, we use simple interpolation
functions to displace the grid due to the tail deflection.
For bending vibrations, the tail deflection at any point
on its surface, w; j , is in the spanwise direction (y
coordmate) The spanwise coordinate of a grid point
y; 3. k at the time level n + 1 is computed from the
equation

y?j kT
g = yn o cos | —2——— | (19)
i,5,k = Jijk iJ.k Yi,]dim/'i.k 2

where Y; jgim/4k is the maximum y coordinate of
a grid point at the boundary of the computational
domain with an index of Jdim/4. Thus, the tail
displacement w:'ﬂ is distributed through a cosine
function among the y coordinates of the grid. Thus,
a point on the tail is displaced by the total defiection

and a point at the boundary is not displaced.

Boundary and Initial Conditions:

Boundary conditions consist of conditions for the
fluid flow and conditions for the aeroelastic deflection
of the tail. For the fluid flow, the Riemann-invariant
boundary conditions are enforced at the inflow and
outflow boundaries of the computational domain. At
the plane of geometric symmetry, a periodic boundary
condition is specified with the exception of grid points
on the tail. On the wing surfaces, the no-shp and
no-penetration conditions are enforced and 52 = 0.
On the tail surfaces, the no-slip and no-penetration
conditions for the relative velocity components are
enforced (points on the tail surface are moving). The
normal pressure gradient is no longer equal to zero
since points on the tall surface are accelerating. This
condition becomes 33 —pooty + 7, where @ is the
acceleration of a point on the tail, which is equal
to ‘Zﬁ-(:,t) For the boundary conditions of the
aeroelastic defiection of the tail, they are given by

Eq. (13).
Initial conditions consist of conditions for the fluid
flow and conditions for the aeroelastic deflection of



the tail. For the fluid flow, the initial conditions
correspond to the freestream conditions with u; =
uy = uz = 0 on the wing and tail. For the aeroelastic
deflection of the tail, the initial conditions for any
point on the tail is that the displacement and velocity
are zeros, w(z.0) = %‘f(z,o) =0

METHOD OF SOLUTION

The first step is to solve for the fluid-flow prob-
lem using the vortex-breakdown conditions and keep-
ing the tail as a rigid beam. Equations (1)-(10) are
solved time-accurately using the implicit, upwind,
flux-difference splitting finite-volume scheme. The
grid speed le: is set equal to zero in this step. This
step provides the flow field solution along with the
pressure difference across the tail. The pressure dif-
ference is used to generate the force per unit length of
the tail, N. Next, Eqs. (14) and (18) are used to ob-
tain the tail defiections, w; ; ;. Equation (19) is used
to compute the grid coordinates. The metric coeffi-
cients of the coordinate Jacobian matrix are updated
as well as the grid speed, Qg;. Next, the compu-
tational cycle is repeated using Eqs. (1)-(10) for the
pressure difference across the tail, Egs. (14) and (18)
for the tail deflections and Eq. (19) for the grid co-
ordinates. It should be noted that the time step for
the fluid-flow problem, Aty, is an order of magnitude
Jess than the time step for the aeroelastic deflection,
At,. Moreover, the maximum tail deflection w for
each Aty is very small. Hence, one does not need
to compute w for each time step, Aty. For example,
if Aty = 10 Aty, the computation of the aeroelas-
tic deflections and grid coordinates can be performed
every 10 Aty.

COMPUTATIONAL APPLICATIONS

CASE 1:

The delta wing-vertical tail configuration consists
of a sharp-edged, delta wing of aspect ratio 1 and
a rectangular, vertical tail of aspect ratio 2, which
is placed in the plane of geometric symmetry. The
vertical-tail leading edge is-located at 0.5 roo{-chord
length from the wing trailing edge. The lower edge
of the tail is along the wing axis and the tail is
clamped at that edge. The wing angle of attack is
35° and the freestream Mach number and Reynolds
number are 0.4 and 10,000, respectively. An O-H
grid of 125x 85x 84 grid points in the wrap-around,

normal and axial directions, respectively, is used for
the solution of the fluid-flow part of the problem.

The solution and analysis of this problem have
progressed through rigorous steps in order to prove
the capability of the present mode! for simulating the
present multidisciplinary problem:

Step 1. Fluid Flow Around the Configuration
(Initial Conditions):

The laminar, unsteady, compressible, full Navier-
Stokes equations have been integrated time accurately
using the implicit, upwind, flux-difference splitting,
finite-volume scheme with At = 0.003. During this
step, the tail is kept rigid. The results of this step are
used as initial conditions for the second step. Fig-
ure 1 shows the spanwise, surface-pressure coefficient
(Cp) on the wing at different chord stations at t =
12,400 (37.2 dimensionless time). At = = 0.421, the
Cp-curve shows asymmetry with the pressure on the
left side having less suction than the pressure on the
right side (looking in the upstream direction). This
indicates that the left-vortex-core size is enlarging. In
Fig. 4, it is noticed that at this location a spiral saddle
point is formed and a spiral vortex-breakdown mode
is developing downstream of that point. Returning
back to Fig. 1, it is noticed that the asymmetry ex-
ists in all the cross-flow planes downstream of = =
0.421. At z = 0.814, a rapid decrease in the suction
pressure on the left side is observed and Fig. 4 shows
several spiral saddle points at that location. At z =
0.944, a rapid decrease in the suction pressure on the
right side is observed and spiral vortex breakdown
develops in the right vortex core (see Fig. 4). Figure
2 shows the total-pressure-loss contours and instan-
taneous streamlines for the left and right sides at dif-
ferent chord stations. The asymmetry is very clear at
r =0.65 and 1.0. At z = 1.0 and on the right side, it
is noticed that a repelling spiral saddle point exists,
which indicates the existence of vortex breakdown.

Figure 3 shows the instantaneous streamlines in
cross-flow planes at two chord stations = = 1.375 and
r = 2.019. The vertical-tail leading edge is located
at r = 1.5 and its trailing edge is at =z = 2.0. Itis
clear that the vertical tail is subjected to asymmetric,
unsteady, surface-pressure loads due to the vortex-
breakdown flow. Figures 4 and 5 show a plan view
of the wing and a three-dimensional view of the
wing-tail configuration, respectively, along with the
spiral saddle points and the asymmetric spiral vortex-
breakdown modes of the leading-edge vortex cores.



Figure 6 shows snapshots of the pressure contours
on the right (J = 1) and left (/ = Jdim) surfaces
of the vertical tail and the pressure-difference on it
at two time levels; it = 12,400 and ¢t = 12,600. A
close inspection of these loads reveals that the tail
is subjected to both bending and torsional loads. In
the present paper, only the bending vibration is taken
into consideration (torsional vibrations are also under
consideration). Figure 7 shows the corresponding
lumped, aerodynamic force per unit length of the tail,
N(z), at two time levels, + = 37.2 and ¢ = 37.8.
It is noticed that within this short time of change,
N(z) changes rapidly in magnitude and direction.
The results at it = 12,600 are used for the initial
conditions of the buffet problem (i.e. letting the tail
deflect and interact dynamically with the flow).

Step 2. Fluid Flow/Tail Deflections Interaction:

With the initial-flow conditions obtained in Step 1
at it = 12,600, the aerodynamic force per unit length
N:(z,t) is provided discretely to the aeroelastic pro-
gram and the generalized forces N, are computed
for six natural mode shapes. The deflections w are
computed using Egs. (14) and (18). Next, Eq. (19)
is used to obtain the updated y-coordinates for the
grid, the metric coefficients of the Jacobian matrix,
the grid speed; and the velocity and acceleration of
the points on the tail for the modified boundary condi-
tions for the fluid-flow solution. Next, the fluid flow
part is solved and N,(z,t) is obtained and the com-
putational cycle is repeated. The tail is treated as a
homogeneous, uniform, rectangular beam with rect-
angular cross section of thickness d = 0.01 and width
b = 0.5. The dimensionless modulus of elasticity is
E = 0.4903 x 102 and EI = 0.0204 x 10™%. The
dimensionless mass per unit length is m = 11.428.
Figure 8 shows the histories of tail deflection, w, and
net pressure force per unit length, N, versus the ver-
tical coordinate z every 500 time steps (every 1.5
dimensionless time). The deflection and net pressure
force versus time are also shown for the tail midpoint
(z = 0.5) and its free-end point z = 1.0. The time-
step counter n is for the interaction case only without
the time steps for initial conditions (:t = 12,600). The
early time levels show very large N values with larger
values at = = 0.5 than at z = 1.0. The tail deflection
w shows a growing oscillatory response reaching a
maximum value for the tail free end at n = 3,700 (2t
= 16,300). Then, the total deflection shows a damped
oscillatory response due to the aerodynamic damping

of the flow. The aerodynamic damping-is automati-
cally included in these results due to the method of
solution which considers the fluid flow, the tail aeroe-
lastic deflection and the grid deformation simultane-
ously. The solutions do not show periodic responses
until n = 6,500 (it = 19,100). It is also noticed that
all the tail deflections are positive.

Figure 9 shows cross-flow velocities and instan-
taneous streamlines along the D-ray plane on the
right and left sides showing the asymmetric vortex-
breakdown flows of the leading-edge vortex cores at
n = 6,500 (it = 19,100). In Fig. 10, the instanta-
neous streamlines are shown in cross-flow planes be-
fore and through the vertical tail at chord stations of
z = 1.37, 1.51, 1.67, and 1.8. These sections show
the asymmetric vortex-breakdown bubbles adjacent to
the deflected tail. Figure 11 shows snapshots of the
surface pressure contours at two instants, n = 3,150
and 6,500 (it = 15,750 and 19,100) on the two sides
of the vertical tail; right side is at J = 1 and left side
is at J = Jdim. This figure shows the asymmetric
unsteady pressure loads which affect the tail.

To show that the tail deflection and its dynamic
response affect the flowfield upstream of the tail loca-
tion, the surface-pressure-coefficient distributions at
several chord stations of the wing at ¢ = 19,100 are
shown in Fig. 12. Comparing the Cp’s of Fig. 1 (it
= 12,400) and those of Fig. 12, it is observed that
the Cp curves as of z = 0.421 are different. Since
the flowfield is subsonic throughout, the disturbances
created by the tail deflection and dynamics propa-
gate upstream affecting the flowfield and the vortex-
breakdown critical points. Figure 13 shows deformed
grids in a cross-flow plane passing through the tail at
x = 1.75 at it = 15,750 and 19,100. The grid defor-
mations and the tail deflection are clearly noticed.

In Fig. 14, color graphics of a top view, tilted
front view and a three-dimensional view of the wing-
tail configuration are shown at ¢t = 19,100. The top
view shows the locations of the spiral saddle points
on the right and left sides of the wing (their locations
are different from those of Fig. 4). The tilted front
view shows the trace of the deflected tail and the
total-pressure surfaces which show the breakdown of
the leading-edge vortex cores. The three-dimensional
view shows the whole configuration including the
total pressure surfaces, the spiral saddle points and
the surface-pressure contours (compare with those of
Fig. 5).



CASE 2

With the same delta wing and same flow condi-
tions, the vertical tail aspect ratio is reduced to one
(b = 0.5, [; = 0.5) and its location is changed to the
wing trailing edge from z = 1.5to z = 1.0. The solu-
tion for the initial conditions is repeated for this new
configuration until it = 12,600. The fiuid flow, tail
deflection and grid displacement interactions are car-
ried out for n = 4,500 (it = 17,100) with At = 0.003.
The material properties of the tail are kept fixed.

Figure 15 shows the histories of tail deflection and
net pressure force per unit length versus the vertical
coordinate = every 500 time steps (every 1.5 dimen-
sionless time). The deflection and net pressure force
versus time are also shown for the tail midpoint (= =
0.25) and its free-end point (z = 0.5). The tail deflec-
tion shows a growing oscillatory response reaching
a maximum value for the midpint at n = 1,200 (at
= 13,800). Then, the tail deflection shows a rapidly
damped oscillatory response due to the aerodynamic
damping of the flow. The tail deflections lead the
net pressure forces and the phase lead is more pro-
nounced at the free end of the tail. The solutions do
not show a periodic response until n = 4,500 (¢t =
17,100). However, the tail deflections show positive
and negative values. The tail deflections are also no-
ticed to change from the second bending-mode shape
to the first bending-mode shape.

Figure 16 shows cross-flow velocities and instan-
taneous streamlines along the D-ray plane on the
right and left sides showing the asymmetric vortex-
breakdown flows of the leading-edge vortex cores at
n = 4,500 (it = 17,100). In Fig. 17, the instantaneous
streamlines are shown in cross-flow planes passing
through the tail at z = 1.01, 1.18, 1.38 and 1.5. These
sections show the asymmetric vortex-breakdown bub-
bles adjacent to the tail surface and covering a larger
height of the tail than those of Fig. 10 (the tail height
here is one-half the tail height of Case 1).

In Fig. 18, color graphics of a top view, a tilted
front view and a three-dimensional view of the wing-
tail configuration are shown at it = 17,100. Compar-
ing these views with those-of Fig. 14,-it is observed
that the spiral saddle points of vortex breakdown, sur-
face pressure and total-pressure surfaces are different
from those of Fig. 14. Again, this shows conclusively
that location, shape, deflections, and dynamics of the
tail substantially affect the flowfield upstream of the
tail, i.e.; on the wing. In Fig. 8, the tail deflection

is noticed in the top view and the three-dimensional
view as well.

CONCLUDING REMARKS

The buffet problem of a vertical tail due to the
interaction of vortex-breakdown flow with the tail
has been simulated computationally and efficiently
using a delta wing-vertical tail configuration. The
wing aspect ratio and flow conditions have been care-
fully selected in order to produce an unsteady vortex-
breakdown flow. The solution has demonstrated the
development of the tail buffet due to the unsteady
loads produced by the vortex-breakdown flow. The
problem is a multidisciplinary problem which re-
quires three sets of equations to obtain its solution.
The first set is the unsteady Navier-Stokes equation
which is used to obtain the aerodynamics force per
unit length on the tail. The second set is the aeroe-
lastic equation for bending vibrations which is used
to obtain the tail deflections, velocities and accelera-
tions. The third set is the grid displacement equation
which is used to update the grid coordinates due to
the tail deflections. The three sets of equations are
solved sequentially and accurately in time. The com-
putational applications included two cases of delta
wing-vertical tail configurations. Fixing the flow con-
ditions and the geometry of the delta wing, two tail
aspect ratios and locations are used. Initially, tail de-
flections and aerodynamic loads were higher for the
first case than the second case. Later on, the deflec-
tions were damped due to the aerodynamic damping
of the flow. The solutions show that the tail location,
shape, deflections and dynamics affect the flowfield
upstream of the tail. Work is underway to include tor-
sional modes to the bending modes, upgrade the tail
model from beam equations to plate equations, and
consider the wing-twin vertical tail configuration.
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Fig. 4. Top view showing surface-pressure contours and streamlines in the vortex
cores showing their spiral-vortex breakdown, AR, =1, AR = 2,

M = 0.4 Re = 10,000 Alpha = 35 it = 12400

Surface Pressure

B Fig. 5. Three-dimensional view of delta wing-vertical tail configuration showing

the spiral vortex breakdown of vortex cores, AR, = 1, AR = 2.
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SHOCK-VORTEX INTERACTION OVER A 65-DEGREE DELTA WING IN TRANSONIC FLOW

Osama A. Kandil* and Hamdy A. Kandil**
Old Dominion University, Norfolk, Virginia 23529

and

C. H. Liu***
NASA Langley Research Center, Hampton, VA 23681

ABSTRACT

Transonic flow over a 65-degree swept-back, sharp-
edged, cropped delta wing is investigated computationally
using the time-accurate solution of the unsteady, com-
pressible, full Navier-Stokes equations with an implicit,
upwind, flux-difference splitting, finite-volume scheme.
Coarse and fine O-H grids are used to obtain the so-
lution. The grid consists of 125x85x84 points in the
wrap-around, normal and axial directions, respectively.
The results are presented for an angle of attack of 20°,
March number of 0.85 and Reynolds number of 3.23x 10
(based on the wing chord length). With the fine grid, the
results show that a system of shocks has been captured
over the upper wing surface, and that the leading-edge
vortex core experiences an unsteady, supersonic vortex
breakdown after passing through a spanwise shock (ter-
minating shock) near the wing trailing edge. The com-
puted results at a certain time are in good agreement with
the experimental data. Topological aspects of the vortex-
breakdown flowfield are also presented and discussed.

INTRODUCTION

At sufficiently high angles of attack, vortex break-
down for incompressible flows around delta wings has
been observed along the leading-edge primary vortex
cores. Two distinct forms of vortex breakdown have been
documented experimentally'. The first form is the bubble
type and the second form is the spiral type. The bub-
ble type shows an almost axisymmetric sudden swelling
of the vortex core into a bubble, while the spiral type
shows an asymmetric, spiral, vortex filament followed by
arapidly spreading turbulent flow. Both types are charac-
terized by an axial stagnation point and a limited region
of reversed axial flow. Much of our knowledge of in-
compressible vortex breakdown has been obtained from
experimental studies of pipe flows where both types of
breakdown and other types as well were generated and
documented®*.

The major effort of computational study of vor-
tex breakdown flows has also -been—focused on iso-
lated swirling flows. For incompressible flows, quasi-
axisymmetric, bubble-type, vortex-breakdown flows were
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Research Associate, Acrospace Engineering Department, Member
AlAA.

Senior Research Scientist, Computational Aerodynamics Branch,
Associste Fellow AIAA.

Copyright © 1993 by Osama Kandil. Published by The American
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computed using the Navier-Stokes equations>®. Three-
dimensional bubble and spiral vortex-breakdown flows
were also computed for isolated swirling flows using
the three-dimensional Navier-Stokes equations in the

vorticity-velocity form or the primitive variables form®-1.

Interaction between a longitudinal vortex and a trans-
verse shock wave occurs in several flow applications
which include transonic and supersonic flows over a delta
wing or a strake-wing configuration at moderate to high
angles of attack, a supersonic inlet ingesting a vortex,
and a supersonic combustor where fuel is injected in a
swirling jet to enhance fuel-air mixing'>'. For delta
wings and strake-wing configurations, vortex breakdown
is an undesirable phenomenon since it produces wing
stall. Therefore, its occurrence needs to be delayed with
passive or active control methods in order to increase
the wing performance at large angles of attack. For
a supersonic combustor, vortex breakdown is desirable
since it enhances mixing of air and fuel and stabilizes the
flame!5'6, Therefore its occurrence needs to be enhanced
and controlled.

For supersonic flows, quasi-axisymmetric bubble-type
vortex-breakdown!”-!? and three-dimensional bubble-type
and spiral-type vortex breakdown® for isolated swirling
flows have been recently computed by the present au-
thors. Using compatible, inlet boundary conditions, the
time-accurate solutions of the unsteady, compressible, full
Navier-Stokes equations were obtained to study the ef-
fects of Reynolds number, Mach number, swirl ratio,
type of exit-boundary conditions and grid fineness and
distribution on the vortex-breakdown modes for internal
and external flows. Several modes of vortex breakdown
which include transient single-bubble, transient multi-
bubble, periodic multi-frequency multi-bubble, quasi-
steady two-bubble cell and spiral-type vortex break-
downs have been obtained”. For three-dimensional
vortex-breakdown flows in a swirling, supersonic jet
flow, topological aspects of the critical points in the
vortex-breakdown region have been studied and com-
pared with the available experimental incompressible
vontex-breakdown topology.

Recent experimental measurements2-2¢ of transonic



flows around a 65° swept-back, cropped delta wing show
that shock wave formation is likely to occur undemeath
the leading-edge primary vortex core. In cross-flow
planes perpendicular to the wing, the cross-flow beneath
the primary vortex reaches supersonic speeds and a cross-
flow shock develops beneath the primary vortex similar
to the supersonic flow in a convergent-divergent nozzle.
These measurements also show that a transverse shock
“terminating shock” which might cause primary-vortex-
core breakdown could develop in an analogous manner
to the shock that terminates the two-dimensional super-
sonic pocket on an airfoil. A complete reconstruction
of the three-dimensional flow field on the delta wing in
this region was not possible experimentally??- 26, Com-
putational simulations for transonic delta-wing flows have
been developed by using the Euler equations™ * and
the thin-layer, Navier-Stokes equations”®. The Euler-
equations solutions were not capable of fully resolving
the flow in the terminating shock region and the thin-
layer, Navier-Stokes solution did not address that region.

In the present paper, we consider the transonic flow
around a 65° sharp-edged, cropped delta wing at an angle
of attack of 20°, a Mach number of 0.85 and a Reynolds
number of 3.23x10°. The purpose of the present numer-
ical simulation and study is to construct the flow field
over the wing with particular emphasis of the voriex
core-terminating shock interaction region. The laminar,
unsteady, compressible, full Navier-Stokes equations are
solved accurately in time with an implicit, flux-difference
splitting, finite-volume scheme. The computations are
carried out with time-accurate stepping on two O-H grids;
a coarse grid and a fine grid. Both grids consist of
125 x 85 x84 points in the wrap-around, normal and axial
directions, respectively. The main difference between the
coarse and fine grids is the distribution of the grid points
normal to the wing surface within the thin viscous layer
(1o be discussed later on).

HIGHLIGHTS OF FORMULATION
AND COMPUTATIONAL SCHEME

The conservative form of the dimensionless, unsteady,
compressible, full Navier-Stokes equations is used for the
formulation of the problem. The equations are written in
terms of the time-independent, body-conformed coordi-
nates £!,£7 and €2 (Ref. 18).

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compress-
ible, full Navier-Stokes equations. The scheme uses the
flux-difference splitting scheme of Roe which is based
on the solution of the approximate one-dimensional, Rie-
mann problem. In the Roe scheme, the inviscid flux dif-
ference at the interface of computational cells is split into
two parts; left and right flux differences. The splitting is
accomplished according to the signs of the eigenvalues of
the Roe averaged-Jacobian matrix of the inviscid fluxes
at the cell interface. The smooth flux limiter is used to
eliminate oscillations at locations of large flow gradients.

The viscous- and heat-flux terms are linearized in time
and the cross-derivative terms are neglected in the im-
plicit operator and retained in the explicit terms. The vis-
cous terms are differenced using a second-order accurate
central differencing. The resulting difference equation is
approximately factored and is solved in three sweeps in
the ¢!, €2 and £° directions. The computational scheme
is coded in the computer program “FINS3D” which is a
modified version of the CFL3D-code.

COMPUTATIONAL RESULTS

A 65° swept-back, sharp-edged, cropped delta wing
with zero thickness is considered for the computational
solutions. The cropping ratio (tip length/root-chord
length) is 0.15. The wing angle of attack is 20°, and the
freestream Mach number and Reynolds number (based
on the root-chord length) are 0.85 and 3.23x105, re-
spectively. The reason behind the present, selected flow
conditions is because of the uncertainty of the existing
experimental data2% about the structure of the down-
stream flow field of the leading-edge vortex core. The
experimental data shows that a supersonic flow region
appears on the upper wing surface near the plane of sym-
metry. This flow region is terminated by a transverse
shock (known as a terminating shock) in a similar way to
the shock that terminates a supersonic pocket on a super-
critical airfoil®.

Grid:

An O-H grid of 125x85x84 in the wrap-around,
normal and axial directions, respectively, is used for the
computational simulation. The computational domain
extends two-chord length forward and five-chord length
backward from the wing trailing edge. The radius of the
computational domain is four<chord length. Two grids
have been constructed using the same number of grid
points. The first is called the coarse grid and the second
is called the fine grid. For the coarse grid, the grid points
in the cross flow planes have been distributed using a
Joukowski transformation which produces a minimum
grid size, normal to the wing surface, that varies from
5x10™ at the leading edge w0 3x107 at the plane of
symmetry. For the fine grid, the elliptical grid lines in
the cross-flow planes have been constructed such that the
minimum grid size normal to the wing surface, stays
constant at 5x10 from the leading edge to the plane
of symmetry. Figures 1 and 2 show three-dimensional
shape of the coarse and fine grids and a cross-flow plane
along with its blow-ups.

Time-accurate integration of the laminar, unsteady,
compressible, full Navier-Stokes equations has been car-
ried out with At = 0.001 for the coarse grid and At =
0.0002 for the fine grid. The results showed that the
leading-edge vortex core passes through a terminating
shock which causes the vortex core to breakdown. More-
over, it is shown that the flow becomes unsteady behind
the terminating shock.



Validation of Surface Pressure:

Figure 3 shows a comparison of the computed, span-
wise surface-pressure coefficient (C,) at different chord
stations for the fine and coarse grids with the experimen-
tal data of Erickson® (R, = 3.23x10°) and Hartmann®
R, = 2.38x10° and 4.57x10°). The computed results
are selected at t = 3.6. Obviously, the coarse-grid C;-
curves do not show the suction-pressure peak correspond-
ing to the secondary vortex and the correct location of the
suction-pressure peak corresponding to the primary vor-
tex. The coarse-grid Cp-curves are similar to those of the
Fuler-equations solution. Therefore, they are discarded
in this paper. The fine-grid C,-curves show the correct
location of the suction-pressure peak corresponding to the
primary vortex and the suction-pressure peak correspond-
ing to the secondary vortex. The fine-grid C,-curves at
x = 0.3, 0.6 and 0.8 are in fair to good agreement with
the experimental data. For x = 0.9, the fine-grid Cp-
curve shows a substantial, rapid increase in the pressure
coefficient (a decrease in the suction pressure). Figure
4 shows the total-Mach contours and the streamlines in
cross-flow planes at the chord stations of x = 0.3, 0.6, 0.8,
0.9, 0.97 and 1.0. At x = 0.3, 0.6 and 0.8, the total-Mach
contours show an oblique shock under the primary vortex
and a small subsonic region to the right of the shock. The
streamlines show the secondary separation to the right of
the shock. This separation is due to the shock interac-
tion with the surface boundary-layer flow and is also due
1o the adverse, spanwise pressure gradient created by the
primary vortex. At x = 0.9, the shock under the primary
vortex becomes weak as observed in the total-Mach con-
tours and the primary-vortex size increases. At x = 0.97,
the shock under the primary vortex disappears and the
primary vortex diffuses and reduces to a repelling focus
as shown by the streamlines. At x = 1.0, the repelling
focus becomes a repelling line. The details of the fiow
structure shown at x = 0.9, 0.97 and 1.0 indicate that
the primary vortex is going through a breakdown mode
which is caused by a transverse shock (terminating shock)
between x = 0.8 and x = 0.9.

Terminating Shock:

To show that a terminating, transverse shock exists
and has been captured computationally, the static-pressure
contours and total-Mach-contours on two planes are com-
puted and displayed in Fig. 5. In this figure, the static-
pressure contours are shown on the wing surface and
the plane of symmetry, and the total-Mach contours are
shown on the third plane (k = 3) above the wing (in the
viscous layer) and on the plane of symmetry. The plane
of symmetry contours clearly show the location, shape
and strength of the terminating shock. Moreover, the
Mach contours show that a substantial supersonic pocket
(bounded by the sonic line and terminating shock) ex-
tends from the wing vertex to the shock location of x =
0.83, which is in good agreement with the experimental
data®®, where the shock is located at x = 0.84. The com-

puted results show that the shock is a normal shock with
a height of 0.4 which is equal to one-half the wing span.
In the spanwise direction, the shock foot print (shown on
the Mach contours at k = 3) extends beyond the primary-
vortex location. A A-type shape of the shock-system foot
print, which on one side of the wing, consists of the ter-
minating shock and the shock under the primary vortex
that runs along a ray plane from the wing vertex, is seen
on the Mach contours at k = 3.

Figure 6 shows the position of the ray lines from the
wing vertex (which are marked by the letters A-H) and
the static-pressure curves along these lines. The static-
pressure curves show the spanwise locations of several
points on the foot-print line of the terminating shock. The
terminating shock is clearly seen to run in the spanwise
direction from the plane of symmetry to the wing leading
edge. It reaches its highest strength from the location of
the primary vortex to the wing leading edge (from line
E to line H).

Vortex-Breakdown Structure:

Having established the shock system that consists of
the shock under the primary vortex and the terminating
shock, the focus is directed on the structure of the flow be-
hind the terminating shock. In Fig. 7, we show the total-
Mach contours and streamlines on a ray plane at the 0.658
spanwise location, which passes through the leading-edge
vortex core. Blow-ups of the velocity vectors and stream-
lines on this vertical plane are also shown in Fig. 7. The
streamlines figures clearly show a two-bubble cell voriex
breakdown. This is a typical three-dimensional vortex-
breakdown mode which consists of an attracting saddle
point (front) a repelling saddle point (rear), an attracting
focus (top) and a repelling focus (bottom). Such a break-
down mode is similar to the one which was captured for
an isolated supersonic vortex in an unbounded domain
in Refs. 20 and 21. The location of the attracting sad-
dle point is at 0.97 along the ray line, which corresponds
to 0.87 along the axial direction. The attracting focus
point is characterized with spiralling-in streamlines and
the repelling focus point is characterized with spiralling-
out streamlines. The Mach contours show that the front
surface of the vortex-breakdown bubbles is enclosed by a
hemi-spherical shape-like shock surface. Figures 12 and
13 show details of the flow structure on the wing plan
view, on the plane of symmetry and on the ray plane at
the 0.658 spanwise location (marked as J = 16 on Fig. 13).
These figures and discussion give a complete construction
of the flow structure including the shock system and its
interaction with the leading-edge vortex core which pro-
duces vortex-breakdown of the two-bubble-cell mode.

Unsteadiness of the Vortex-Breakdown:

The computations have been carried out with time-
accurate stepping beyond t = 3.6. Figures 8-11 show the
results at t = 5.52. These results show that the terminating
shock moves in the upstream direction and so is the



two-bubble-cell vortex breakdown behind the terminating
shock. Figure 8 shows that the repelling focus is at x =
0.88 instead of x = 0.97 (Fig. 4). Figure 9 shows that
the terminating shock in the plane of symmetry is at x =
0.685 instead of x = 0.83 (Fig. 5). The shock decreases in
height and its thickness increases. Figure 10 shows that
the size of the two-bubble cell vortex-breakdown region
increases in comparison with the size at t = 3.6 (Fig. 7).
Upstream of the terminating shock the flow stayed steady
without any change.

Beyond the time t = 5.52, the upstream shock motion
stopped and the motion reversed its direction to the down-
stream. The computations were not carried out beyond

this instant due to its impeding cost. The unsteadiness of -

the terminating shock and the vortex-breakdown region
behind it have also been observed experimentally by Ban-
nik and Houtmann®. They also observed that the flow
upstream of the terminating shock stayed steady without
any change. These experimental observations undoubt-
edly support and validate our computational results.

CONCLUDING REMARKS

The laminar, unsteady, compressible, full Navier-
Stokes equations are integrated time accurately using the
implicit, upwind, flux-difference splitting, finite-volume
scheme 1o study and construct the flow field structure of
a transonic flow around a 65° sharp-edged, cropped-delta
wing. A A-shock system, which consists of a ray shock
undcr the primary vortex core and a transverse terminat-
ing shock, has been captured. Behind the terminating
shock, the leading-edge vortex core breaks down into a
iwo-bubble cell type. The terminating shock and the vor-
tcx brcakdown region behind it is time dependent and
appears o be oscillatory. The flow field ahead of the ter-
minating shock stays steady without any change. This is
consistent with the fact that the supersonic pocket along
with the terminating shock do not allow disturbances 10
propagate upstream. The present results have been vali-
dated using the available experimental data and they are
in good agreement. The present paper gives a complete
construction of the flow field over the wing surface and
in particular the structure of the flow at the terminating
shock and behind it
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Fig. 3. Comparison of the computed and experimental spanwise, surface-pressure

coefficient at different chord stations; Mo, = 0.85, o = 20°, t = 3.6



Fig. 4. Total-Mach contours and streamlines in cross-flow
planes; My, = 0.85, o = 20°, t = 3.6
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Fig. 7. Total-Mach contours, streamlines and velocity vectors on a ray plane passing through
the vortex-breakdown two-bubble cell; Mo = 0.85, a =20° t =36
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Fig. 8. Total-Mach contours and streamlines in cross-flow
plane; My = 0.85, o = 20°, t = 5.52
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ABSTRACT

The effects of freestream Mach number and angle of
attack on the leading-edge vortex breakdown due 1o the
terminating shock on a 65-degree, sharp-edged, cropped
delta wing are investigated computationally. The compu-
tational investigation uses the time-accurate solution of
the laminar, unsteady, compressible, full Navier-Stokes
equations with the implicit, upwind, flux-difference split-
ting, finite-volume scheme. A fine O-H grid consisting of
125 x85 x84 points in the wrap-around, normal and axial
directions, respectively, is used for all the flow cases.
Keeping the Reynolds number fixed at 3.23x 108, the
Mach number is varied from 0.85 to 0.9 and the angle
of attack is varied from 20° to 24°. The results show that
at 20° angle of auack, the increase of the Mach number
from 0.85 to 0.9 results in moving the location of the ter-
minating shock downstream. The results also show that
at 0.85 Mach number, the increase of the angle of at-
tack from 20° to 24° results in moving the location of
the terminating shock upstream. The results are in good
agreement with the experimental data.

INTRODUCTION

The literature shows that vortical flows around delta
wings in the low-speed regime have received a substantial
volume of experimental'™ and computational®*? research
work. In the high angle of atiack range, vortical flows in
the low-speed regime are characterized with three types
of boundary-layer separation, namely; primary, secondary
and tertiary separations. The primary separated flow rolls
up into a strong primary vortex core which produces a
strong suction-pressure peak on the wing surface. The
spanwise adverse-pressure gradient of the primary vortex
causes the spanwise, outboard-moving, boundary-layer
flow to separate forming a secondary vortex with opposite
sense of rotation to and smaller strength than that of the
primary vortex. The spanwise adverse-pressure gradient
of the secondary vortex causes the spanwise, inboard-
moving, boundary-layer flow to separate forming a ter-
tiary vortex with same sense of rotation as and substan-
tially small strength than that of the primary vortex. The
spanwise surface-pressure curves are characlerized with
three suction-pressure peaks which varies in strength cor-
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responding to the locations of the primary, secondary and
tertiary vortices. When the angle of attack reaches a crit-
ical value, the axial-pressure gradient and the high swirl
ratio of the primary vortex produce a stagnation point
along the path line of the primary-vortex core, and vor-
tex breakdown of the primary core develops. Depending
on the swirl ratio, axial pressure gradient and Reynolds
number, the primary-core vortex-breakdown mode might
be a bubble type, a spiral type or a bubble-spiral type.

As the freestream Mach number increases, the vortical
flow around the delta wing changes substantially due to
the compressibility effects. In the supersonic flow regime,
shock waves appear beneath or above the primary vor-
tex, depending on the freestream normal Mach number
and normal angle of attack. Experimental data'®!! and
the computational results'?** have shown these types of
vortical-flow structures. The foot print of these shock
waves runs along a ray line from the wing vertex. If
the shock wave is beneath the primary vortex, it interacts
with the spanwise, outboard-moving, boundary-layer flow
and causes, in addition to the adverse pressure gradient
produced by the primary vortex, secondary-flow separa-
tion. If the shock wave is above the primary vortex, it
flattens the primary vortex and the spanwise surface pres-
sure curve. Comparison of the surface pressure distribu-
tion over a delta wing in low-speed and supersonic-speed
regimes, shows that the suction-pressure peak correspond-
ing to the primary vortex is lower for the supersonic flow
than that for the low-speed flow.

In the transonic-flow regime, research work on vor-
tical flows around delta wings was given adequate at-
tention only recently. Understanding the steady and un-
steady, transonic, vortical-flow structures around delta
wings in the moderate-high angle of atack range is im-
portant for increasing the performance quality of the new
generation of supermaneuver aircraft (e.g. YF22). Recent
experimental measurements of transonic flows around a
65° cropped delta wing'>-?! show that a complex shock-
wave system appears over the upper wing surface. The
shock-wave system consists of a ray shock wave beneath
the leading-edge primary vortex and a transverse, time-
dependent'®, normal-shock wave (known as a terminat-
ing shock) which runs from the plane of symmetry to the
wing leading edge. The terminating shock wave interacts



with the primary-vortex core causing it to breakdown at
an angle of attack as low as 18°. Such a critical angle
of attack is substantially smaller than the critical angle
of attack of vortex breakdown in the low-speed regime.
Reference 21 contains extensive flow measurements for
the 65° cropped delta wing with and without leading-
edge extension (LEX). A complete reconstruction of the
three-dimensional flow field at and behind the terminating
shock was not possible experimentally.

Computational simulations for transonic delta-wing
flows have been developed on a very limited scale by
using the Euler equations® 2 and the thin-layer Navier-

Stokes equations®. The Euler-equations solutions were.

not capable of fully resolving the flow in the terminating
shock region and the thin-layer Navier-Stokes-equations
solutions did not address that region. In Ref. 24 by the
present authors, the laminar, unsteady, compressible, full
Navier-Stokes equations are integrated time accurately us-
ing the implicit, upwind, flux-difference splitting, finite-
volume scheme to study and construct the flow field
structure of a transonic flow around a 65° sharp-edged,
cropped-delta wing at 20° angle to atack, 0.85 Mach
number and 3.23x10° Reynolds number. A fine O-H
grid consisting of 125x85x84 points in the wrap-around,
normal and axial directions, respectively, is used for the
computational solution. A A-shock system, which con-
sists of a ray shock under the primary vortex core and
a transverse terminating shock, has been captured. Be-
hind the terminating shock, the leading-edge vortex core
breaks down into a two-bubble cell type. The terminat-
ing shock and the vortex breakdown region behind it are
time dependent and appear to be oscillatory. The flow
field ahead of the terminating shock is steady and in-
cludes a supersonic pocket which is surrounded by the
ray shock and the terminating shock. The flow inside
the pocket does not change due to changes in the flow
downstream. This is consistent with the fact that the su-
personic pocket along with the terminating shock do not
allow disturbances to propagate upstream. These results
have been validated using the available experimental data
and they are in good agreement. This work gives a com-
plete construction of the flow field over the wing surface
and in particular the structure of the flow at the terminat-
ing shock and behind it.

In this paper, a parametric study is carried out 10 in-
vestigate the effects of freestream Mach number and an-
gle of attack on the terminating shock and the leading-
edge, primary-vortex breakdown for the same 65° sharp-
edged, cropped delta wing. The computational investiga-
tion uses the same equations, computational scheme and
grid of Ref. 24. Keeping the Reynolds number fixed at

3.23x10%, the Mach number is changed from 0.85 t0 0.9

while the angle of attack is fixed at 20°, and the angle
of attack is changed from 20° to 24° while the Mach
number is fixed at 0.85.

HIGHLIGHTS OF FORMULATION
AND COMPUTATIONAL SCHEME

The conservative form of the dimensionless, unsteady,
compressible, full Navier-Stokes equations is used for the
formulation of the problem. The equations are written in
terms of the time-independent, body-conformed coordi-
nates £',¢2 and £ (Ref. 25).

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compress-
ible, full Navier-Stokes equations. The scheme uses the
flux-difference splitting scheme of Roe which is based
on the solution of the approximate one-dimensional, Rie-
mann problem. In the Roe scheme, the inviscid flux dif-
ference at the interface of computational cells is split into
two parts; left and right flux differences. The splitting is
accomplished according to the signs of the eigenvalues of
the Roe averaged-Jacobian matrix of the inviscid fluxes
at the cell interface. The smooth flux limiter is used to
eliminate oscillations at locations of large flow gradients.
The viscous- and heat-flux terms are linearized in time
and the cross-derivative terms are neglected in the im-
plicit operator and retained in the explicit terms. The vis-
cous terms are differenced using a second-order accurate
central differencing. The resulting difference equation is
approximately factored and is solved in threc sweeps in
the €!,¢* and ¢° directions. The computational scheme
is coded in the computer program “FTNS3D” which is a
modified version of the CFL3D-code.

COMPUTATIONAL RESULTS

A 65° swept-back, sharp-edged, cropped delta wing
of zero thickness is considered for the computational so-
lutions. The cropping ratio (tip length/root-chord length)
is 0.15. An O-H grid of 125x85x84 in the wrap-around,
normal and axial directions, respectively, is used. The
computational domain extends two-chord length forward
and five-chord length backward from the wing trailing
edge. The radius of the computational domain is four-
chord length. The minimum grid size normal to the wing
surface is Sx 10~ from the leading edge to the plane of
symmetry. Figure 1 shows a three-dimensional shape of
the grid and a cross-flow plane.

Time-accurate integration of the laminar, unsteady,
compressible, full Navier-Stokes equations has been car-
ried out with At = 0.0002. Three flow conditions are
used to study the effect of increasing the Mach number
while the angle of attack is kept constant and the effect
of increasing the angle of attack while the Mach num-
ber is kept constant. In all the three cases, the Reynolds
number, R,, is 3.23x10° based on the root-chord length.

Case I (M, = 0.85, o = 20°)

For this case, the freestream Mach number, M., and
angle of attack, a, are 0.85 and 20°, respectively. Figure 2
shows a comparison of the computed, spanwise, surface-
pressure coefficient (C;) at different chord stations (x =



0.3, 0.6 and 0.8) with the experimental data of Erickson?!
R, = 3.23x10%) and Hartmann" (R, = 2.38x10% and
4.57x10%). The computational results show the correct
location and level of the suction-pressure peak corre-
sponding to the primary voriex in comparison with the
experimental data. They also show a smaller suction-
pressure peak corresponding to the secondary vortex. The
computational results are in fair to good agreement with
the experimental data. For the chord station x = 0.9, the
C,-curve shows a rapid increase in the pressure coeffi-
cient (a decrease in the suction-pressure coefficient). For
example, the suction-pressure-peak coefficient increases
from a value of -1.4 at x = 0.8 10 a valueof -1.15 at x =
0.9. Figure 3 shows the total-Mach contours and stream-
lines at the chord stations of x = 0.60, 0.90 and 0.97.
At x = 0.60, the Mach contours show an oblique shock
beneath the primary vortex and a subsonic, separated re-
gion to its right. The streamlines show a secondary sepa-
rated flow and the corresponding secondary vortex. This
separation is due to the shock interaction with the sur-
face boundary-layer flow and is also due to the adverse,
spanwise pressure gradient created by the primary vor-
tex. At x = 0.90, the shock beneath the primary vortex
becomes weak and the primary-voriex size increases. At
x = 0.97, the shock beneath the primary vortex disap-
pears and the primary vortex diffuses and reduces to a
repelling focus, as shown by the streamlines. The details
of the flow structure at x = 0.90 and 0.97 in addition
to the spanwise, pressure-distribution curve at x = 0.90
clearly indicate that the primary vortex is experiencing a
vortex breakdown due 10 a transverse shock (terminating
shock) which is located between x = 0.80 and x = 0.90.

Figure 4 shows the static pressure contours on the
wing and symmetry planes. The contours clearly show
the location, shape and strength of the terminating shock.
A substantial supersonic pocket which is bounded by the
terminating shock and the ray shocks (shocks beneath
the primary-vortex cores) is observed on the wing plane.
The terminating shock is located at x = 0.83 at the
plane of symmetry, which is in good agreement with the
experimental data?!, where the shock is located at x = 0.84
at the plane of symmetry. Figure 5 shows the position of
ray lines from the wing vertex (which are marked by the
letters A-H) and the static-pressure variation along these
lines. The static-pressure curves give several points o
generate the foot-print line of the terminating shock. The
terminating shock is found to extend from the plane of
symmetry to the wing leading edge. It reaches its highest
strength at the location of the primary vortex (lines E-G).
Figure 6 shows the total-Mach contours and streamlines
on a vertical ray plane at the 0.68 spanwise location which
passes through the vortex breakdown. Blow-ups of the
velocity vectors and streamlines on this ray plane are also
shown in Fig. 6. The streamlines conclusively show a
two-bubble cell vortex breakdown. It is a typical three-
dimensional vortex breakdown mode which consists of
an attracting saddle point (front), a repelling saddle point
(rear), an attracting focus (top), and a repelling focus

(bottom). Such a breakdown mode is similar 1o the one
which was captured for an isolated supersonic vortex in
an unbounded domain in Refs. 26 and 27. The location
of the attracting saddle point is at 0.97 along the ray line
which corresponds to a location of 0.87 along the axial
direction. The Mach contours show that the front surface
of the vortex-breakdown bubbles is enclosed by a hemi-
spherical shape-like shock surface. In Fig. 18, the details
of the flow structure on the wing and symmetry planes
are shown,

Having established the flow structure of this case, the
Mach number is increased to 0.9 while the angle of attack
is kept fixed at 20°.

Case II (M, = 0.90, a = 20°)

The results of this case are given in Figs. 7-11 and
19. Figure 7 shows the computational spanwise, surface-
pressure coefficient at different chord stations along with
the experimental data of Erickson®'. The computational
results are in good agreement with the experimental data
at x = 03 and 0.6. At x = 0.8, the computational re-
sults underestimates the pressure coefficient of the exper-
imental data. The locations of the primary and secondary
vortex cores are in good agreement with those of the ex-
perimental data. It is noticed that the levels of C, for
the present case are lower than those of Case I (Fig. 2).
Again, the pressure level decreases rapidly at x = 0.90.
Figure 8 shows the total-Mach contours and streamlines
in cross-flow planes at x = 0.60, 0.90 and 0.97. The shock
beneath the primary vortex is observed in the Figures at
x = 0.60 and x = 0.90. For x = 0.90, the shock beneath
the primary vortex is still strong in comparison with that
of Case 1 (Fig. 3). At x = 0.97, the repelling focus is
observed indicating that vortex breakdown has occurred.
Figure 9 shows that the terminating shock in the cross-
flow plane is located at x = 0.93 within the boundary-
layer, which is in good comparison with the experimen-
tally measured shock of Ref. 21, where it is located at x
= 0.95. The static-pressure contours on the wing plane
show that the terminating shock for Case II (Fig. 9) is
closer to the trailing edge that of Case I (Fig. 4). It should
be noted here that the terminating-shock location in the
outer flow is ahead of its location in the boundary-layer
flow. The static-pressure variations along the ray lines of
Fig. 10 clearly show that the terminating-shock foot print
is located between x = 0.925 and x = 0.95, and that it
extends from the plane of symmetry to the wing leading
edge. Figure 11 shows the Mach contours and stream-
lines on a vertical ray plane passing through the vortex
breakdown. It is noticed that the vortex breakdown shape
is different from and smaller than that of Case I (Fig. 6).
The attracting saddle point, auracting focus and repelling
saddle point are clearly observed. The repelling focus
is very small. This indicates that the terminating shock
becomes smaller in strength than that of Case 1. Figure
19 shows the details of this fiow case on the wing and
symmetry planes.



It is concluded that as the freestream Mach number
increases slightly from 0.85 to 0.9, the terminating shock
strength decreases and its location moves downstream
from x = 0.84 1o x = 0.93. Moreover, the surface pressure
levels become smaller than those of Case 1.

Next, the Mach number is kept fixed at 0.85 and the

angle of auack is increased to 24°,

Case III (M, = 0.85, a = 24°)

The results of this case are given in Figs. 12-17 and
20. The computational surface-pressure result at x = 03
(Fig. 12) is in good agreement with the experimental data

of Erickson?!. However, the computational results, at x

= 0.6 and 0.8 are either overpredicting or underpredicting
the experimental data. Figures 13, 14 and 15 show that
the terminating shock moves upstream to x = 0.753 in the
boundary-layer flow at the plane of symmetry. This is in
good agreement with the experimental data of Ref. 21,
where the shock is located at x = 0.75 in the boundary
layer flow. The terminating-shock location in the outer
flow is ahead of its location in the boundary layer. Figure
16 shows that the vortex-breakdown region is larger than
those of Cases 1 and II. Moreover, the attracting and
repelling foci are smaller than those of Case 1. Figure 20
shows the details of this case on the wing and symmetry
planes.

Thus, it is seen that as the angle of auack increases
from 20° w0 24° while the Mach number is kept fixed
at 0.85, the terminating shock moves upstream and the
vortex-breakdown region becomes large. Moreover, the
surface pressure levels become larger than those of Case 1.

The computational results show that the flow at the
terminating shock and behind it is time dependent and it
indicates oscillatory motion (The computations have not
been carried out beyond t = 6.0 or 30,000 time steps
with At = 0.0002). In Fig. 17, we show snapshots of the
streamlines and their blow-ups on a ray plane passing
through the vortex-breakdown region. The snapshots
are shown at t = 422, 5.16 and 552. It is clearly
seen that the vortex breakdown moves upstream showing
different modes. In the same lime, the terminating shock
is also moving upstream and slows down to reverse its
direction of motion. This is in complete agreement with
the experimental observations of Bannik and Houtmann'é.

CONCLUDING REMARKS

The laminar, unsteady, compressible, full Navier-
Stokes equations are integrated time accurately using the
implicit, upwind, flux-difference splitting finite-volume
scheme to study the transonic flow field around a 65°
sharp-edged, cropped delta wing. First, the flow field has
been constructed for a Reynolds number of 3.23x10°,
a Mach number of 0.85 and an angle of attack of 20°
(Case I). A A-shock system consisting of a ray shock be-
neath the primary vortex core and a transverse terminating
shock has been captured. Behind the terminating shock,

the leading-edge vortex core breaks down. Keeping the
Reynolds number constant and the angle of attack fixed
at 20°, the Mach number is increased to 0.90. The results
of this case (Case IT) show that the terminating shock
moves downstream and the vortex-breakdown region be-
comes smaller than that of Case 1. Keeping the Reynolds
number constant and the Mach number fixed at 0.85, the
angle of attack is increased to 20°. The results of this
case (Case III) show that the terminating shock moves up-
stream and the vortex-breakdown region becomes larger
than that of Case I. The computational results are in good
agreement with the experimental data. However, it must
be emphasized that the flow at the terminating shock and
behind it is time dependent while the flow ahead of the
terminating shock is steady. The present paper shows the
structure of the flow field behind the terminating shock
for the first time.
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x = 090
Fig. 3 Total-Mach contours and streamlines in cross-flow planes;
My = 0.85, a = 20°.
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Fig. 4 Static-pressure contours on the wing and symmetry planes;
My = 0.85, a = 20°.
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Fig. 8 Total-Mach contours and streamlines in cross-flow planes; My, = 0.90, o = 20°.

N,

=

=L |
U

0.08 1.00
PRESSURE CONTOURS ON THE WING SURFACE PRESS. CONTOURS ON THE PLANE OF SYMMTRY
Fig. 9 Static-pressure contours on the wing and symmetry planes;
My = 090, a = 20°.
ACE

DELTA NI:G”:.LU-D'I.SUSA Rf-a.;Jl.lll s e
Fig. 10 Ray lines on the wing surface and the static-pressure variation along them;
My = 090, o = 20°.

9



Cp

Cp

Upper-surface spanwise pressure~cocfficient variation at X = 03

Fig. 11 Total-Mach contours, streamlines and
passing through the vortex breakdown;

velocity vectors on a ray plane
My, =09, a = 20°

Uppa-anfncespanwisepmssune-coeﬂkiemnriaﬁmuxno.s

2

-15

Present Results, Re=3.23 ——
"¢ Erickson, Re=323_ |

Re=323 —
Erickson, Re=323 € |

[T AU SPPSURSSTEE R RT R SRt C L LR Sk

0.5

Upper-surface spanwise pressure-coefficient variation at x = 0.6 2

02 04

0.6 038 1
y/(x)

04 0.6 0.8 1
yh(x)
Upper-surface spanwise pressure-coefficient variation at x = 0.9

-1

Prescnt Results, Ré=3

Jeesccnsanrimssereobrossaannanueans ed

T .

0.5

04
y/o(x)

Fig. 12 Comparison of the computed and expe
coefficient at different chord stations;

10

0.6 0.8

yA(x)

04

rimental spanwise, surface-pressure
My = 0.85, o = 24°.



Fig. 13 Total-Mach contours and streamlines in cross-flow planes; My, = 0.85, a = 24°,
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Fig. 16 Total-Mach contours, streamlines and velocity vectors on a ray plane
passing through the vortex breakdown; My, = 0.85, a ="24°.
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Fig. 17 Streamlines and blow-up on a ray plane passing through the vortex
breakdown at different time levels; Mo, = 0.85, o = 24°.
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Supersonic Vortex Breakdown on a Delta Wing
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Fig. 18 Surface-pressure and Mach contours and particle trace on wing and:
symmetry planes; Mo = 0.85, o = 20°.
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Supersonic Vortex Breakdown on a Delta Wing
M = 0.9, Re = 3,230,000 and AOA = 20
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Fig. 19 Surface-pressure and Mach contours and particle trace on wing and
symmetry planes; Mo = 0.90, a = 20°.
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Fig. 20 Surface-pressure and Mach contours and particle trace on wing and
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Osama A. Kandil* and Ahmed A. Salman®**
Old Dominion University, Norfolk, VA 23529, USA

ABSTRACT

The unsteady Euler equations and the Euler equa-
tions of rigid-body dynamics, both written in the mov-
ing frame of reference, are sequentially solved to simu-
late the limit-cycle rock motion of slender delta wings.
The govemning equations of fluid flow and dynamics
of the present multi-disciplinary problem are solved us-
ing an implicit, approximately-factored, central-difference
like, finite-volume scheme and a four-stage Runge-Kutta
scheme, respectively. For the control of wing-rock
motion, leading-edge flaps are forced to oscillate anti-
symmetrically at prescribed frequency and amplitude
which are tuned in order to suppress the rock motion.
Since the computational grid deforms due to the leading-
edge flaps motion, the grid is dynamically deformed using
the Navier-displacement (ND) equations. Computational
applications cover locally-conical and three-dimensional
solutions for the wing-rock simulation and its control.

INTRODUCTION

The dynamic phenomenon of wing rock is character-
ized by large-amplitude, high-frequency, rolling oscilla-
tion with a limit-cycle amplimde. The rolling oscillation
is self excited and it is triggered by vortex-flow asymme-
try or vortex breakdown on highly swept delta wings at
high angles of attack. The study of this phenomenon is
vital for the dynamic stability and controllability of high
performance aircraft during maneuvering and landing.

The literature shows that several experimental
investigations!*® have been conducted to gain basic un-
derstanding of the phenomenon. Nguyen, et al.! tested
a flat-plate delta wing with 80° leading-edge sweep for
forced-oscillation, rotary and free-to-roll tests. The free-
to-roll tests showed that the wing exhibited a rock motion
at angles of attack greater than 25°, and that the rock mo-
tion reached the same limit-cycle response irrespective of
the initial conditions. Levin and Katz? tested two delta
wings with leading-edge sweeps of 76° and 80°. They
found that only the wing with the 80° sweep would un-
dergo a rock motion. Nelson and his co-workers** con-
ducted a series of experimental studies to investigate the
mechanisms responsible for wing rock on a delta wing
with 80° leading-edge sweep. Their analysis revealed that
the primary mechanism for the phenomenon was a time
lag in the position of the vortices normal to the wing
surface. Moreover, they concluded, through the analy-
sis of separate contributions of the wing upper and lower

*Professor and Eminent Scholar, Department of Mechanical Engineering
and Mechanics, Associate Fellow AIAA
**Graduate Stdent, Same Department, Member ALAA.

surface-pressure distributions, that the upper surface pres-
sure provides all of the instability and little damping in the
roll moment and that the lower surface pressure provides
the classical roll damping hysteresis. Morris and Ward$
conducted dynamic measurements in both a water tun-
nel and a wind tunnel on a delta wing with leading-edge
sweep of 80°. Their results showed that the measured
hysteresis loops in the water tunnel were opposite in di-
rection to those of the wind tunnel. They concluded that
the hysteresis direction does not play as decisive a role as
previously thought in initiating and sustaining wing rock.

Erickson’® analyzed experimental data for aircraft
configurations at high angles of attack in an attempt 10
reveal the flow processes which generate wing rock. He
concluded that wing rock phenomenon for slender wings
is caused by asymmetric-leading-edge vortices and that
the vortex breakdown provides a limiter to the growth
of wing-rock amplitude. He also identified another two
mechanisms for limit-cycle oscillations in roll for ad-
vanced aircraft.

The literature review showed that numerical simula-
tion of this phenomenon for low speeds has recently been
presented by Konstadinopoulos, et al.’, This has been
followed by developments of analytical models to inves-
tigate the parameters affecting this phenomenon. Nayfeh,
et al.'%!! have presented two analytical models and Hsu
and Lan'? have presented one analytical model. The im-
proved analytical model of Nayfeh, et al.!! proved to
be superior in comparison with the Hsu and Lan model
and more accurate than their first model of reference!®.
The model of reference!! accurately fitted the rolling mo-
ment coefficient, which was computed by a vortex-lattice
method, using five terms which included the linear acro-
dynamic damping and restoring moments and the nonlin-
ear acrodynamic damping moments. With this model, it
was shown on the phase plane that both the wing rock
and wing-roll divergence were possible responses for the
wing. Hsu and Lan’s model cannot predict wing-roll di-
vergence. A serious question which can be raised regard-
ing the work in references 9-12 is: how accurate the fluid
dynamics solution is, using the vortex lattice method?
Moreover, the fluid dynamics model limits its applica-
bility to low-speed flows and to angles of attack below
the critical valve for vortex breakdown. Moreover, the
vortex lattice model also cannot predict separated flows
from smooth surfaces.



The first computational unsteady solution for the
forced-rolling oscillation of a delta wing, which was
based on the unsteady Euler equations, was presented

by Kandil and Chuang'®. The solution used the locally-

conical flow assumption for supersonic flows in order to
reduce the computational time by an order of magnitude
as compared to that of the three-dimensional solutions.
Forced-pitching oscillation of airfoils were also consid-
ered in a later paper by Kandil and Chuang'4. The first
unsteady three-dimensional Euler solution for the forced-
pitching oscillation of a delta wing was also presented
by Kandil and Chuang'S. The unsteady Navier-Stokes
solutions were also used by Kandil and Chuang!® for
the forced-rolling oscillation of a delta wing under the
locally-conical flow assumption. Batina'’ developed a
conical Euler solver, which was based on the use of un-
structured grids, and used it to solve for the flow around
a delta wing undergoing forced-rolling oscillation under
the locally-conical flow assumption. Later on, Lee and
Batina'® extended the Euler solver to include a free-to-
roll capability to solve for a freely rolling delta wing
which exhibited wing rock. The solution was based on the
locally-conical flow assumption. In Ref. 19, the present
authors studied symmetric and anti-symmetric forced-
rolling oscillations of the leading-edge flaps of a delta
wing. A hinge is considered at the 75% location of the
local half span and the leading-edge flaps are forced to
oscillate both symmetrically and anti-symmetrically. The
Navier-Stokes and Euler equations are used to solve the
problem along with the Navier-displacement equation to
account for the grid deformation due to the leading-edge
flaps motion. In a later paper by the authors??, the effects
of symmetric and anti-symmetric flaps oscillation with
varying frequencies have been investigated for two flow
conditions. With the aid of these studies, the authors?! 2
studied the wing rock phenomenon as well as its ac-
tive control using anti-symmetric tuned oscillations of the
wing leading-edge flaps. The sequential solutions of un-
steady Euler equations and the Navier-displacement equa-
lions along with the Euler equation of rigid-body rolling
motion were used to obtain solutions for these prob-
lems. The locally-conical flow assumption was also used
throughout these solutions. Simulation of wing-rock and
wing-divergence motions was presented by the authors
for the three-dimensional flows in Ref. 23.

In the present paper, the unsteady Euler equations and
the Euler equations of rigid-body dynamics, both written
in the moving frame of reference, are used to simulate
the limit-cycle rock motion of slender delta wings. Con-
trolling the wing-rock motion is achieved by using anti-
symmetric forced-oscillation of the wing leading-edge
flaps. For the active control of wing rock, the grid is
dynamically deformed using the ND equations.

FORMULATION

The formulation of the problem consists of three sets
of equations. The first set is the unsteady, compressible,
Euler equations which are written relative to a moving
frame of reference. This set is used to compute the
flowfield for steady or unsteady flows. The second set is
the unsteady, linearized, Navier-displacement equations
which are used in the moving frame of reference to
compute the grid displacements whenever the ieading-
edge flaps oscillate, If the leading-edge flaps do not
oscillate, the ND equations are not used. The third set
is the Euler equations of rigid-body motion for the wing
only or for the wing and its flaps. This set is used to
compute the wing motion for the wing-rock problem. It
is solved in sequence with the first set. For the control
of wing-rock motion, this set is solved in sequence with
the first and second sets.

Unsteady Euler Equations

Using the transformation equations from the space-
fixed frame of reference to a moving frame of reference
(Refs. 13-15), the non-dimensional, unsteady, compress-
ible, Euler equations are transformed to the moving frame
of reference. Such a transformation climinates the mo-
tion of the computational grid for rigid wings having
time-dependent rigid-body motion. Since the fiaps of the
wings are allowed very small relative rigid-body motion
per time step of the integration scheme, one must con-
sider the computational grid as time-dependent whenever
the grid is updated, and the grid speed in Egs. (4) and
(5) must be computed. Hence, the Euler equations are
given by
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p=rly —l)(c—7+2> (10)

(11

The reference parameters for the dimensionless form
of the equations are L, a., L/a. and p, for the length,
velocity, time and density, respectively. Here, L is a
reference length which is taken as the wing root-chord
length,

In Egs. (1)-(11), the indicial notation is used for con-
venience. Hence the indices k,/,n and s are summation
indices and m is a free index. The range of k,!,m,n,
and s is 1-3 and 8, = .

The term % represents the mth component of the
grid velocity. It is set equal to zero when the grid is not
being updated. In Egs. (1)-(11), p is the density, u, the
relative fluid velocity component, V, and &, translation
velocity and acceleration of the moving frame, V; and
a, the transformation velocity and acceleration from the
space-fixed to the moving frames of reference, & and w
the angular velocity and acceleration of the moving frame,
7 the fluid position vector, p the pressure, ¢ and h the total
energy and enthalpy per unit mass relative to the moving
frame and v the gas index which is set equal to 1.4,

Unsteady, Linearized Navier-Displacement
Equations

The details of the derivation of these equations are
given by the authors in Ref. 20. The dimensionless form
of these equations is given by

pMe 8 &
R.m O at?
where 1 is the displacement vector of a grid point. For
cach grid point (a fluid element), Eq. (12) is integrated

-Vp+ 5= [ V(V-8)+ V? ] =p (12)

over a short time range (¢ —t,) where A, u and p are
kept constants. This yields the equation

/ Vpdt 4 LM “M" [—V(V La)+ v*a]

= py + Co() 13)

In Eq. (12), we use R,, to refer to the mesh point
Reynolds number which is different from the flow
Reynolds number. This has been done in order to provide
a limiter for the grid displacement to avoid grid distortion
or overlapping, particularly in regions of high flow rever-
sal. Equation (13) is the vector form of the ND equations
to be used for computing the grid-points displacement i
subject to displacement boundary and initial conditions.
The equation is a parabolic equation in time which is in-
tegrated by using the alternating direction implicit (ADI)
scheme. The constant C,(7) in Eq. (13) is computed from
the preceding time-range integrations.

Euler Equation of Rolling Rigid Wing With and
Without Oscillating Leading-Edge Flaps:

" Figure 1 shows a sketch of a wing and its flaps which
are undergoing rolling motions. The rolling motion of
the flaps is anti-symmetric. The wing is fixed to an
axile which rotates in bearings. The bearings damping
coefficient is A. Torsional springs of stiffness t are
assumed at the ends of the axle. The xyz axes which
are fixed to the wing are assumed to coincide with the
principal axes of inertia of the wing-flaps configuration.
At section A-A, the wing half span is /; and the flap
width is /2. The masses of the wing and ecach flap are m,
and m;, respectively, and their respective mass-moment
of inertias around their centers of mass are I, and [.
The generalized coordinates of the system are taken as 9,
and 6,, which are measured from the horizontal position.
If the acrodynamic moment of the wing and its flaps about
the x-axis is C, and if one uses the Lagrangian dynamics
for obtaining the governing equations of motion, one gets
the following equation for the 8, coordinate

C, - (2Iu: - 713 = mall; cos 031)521
+ myl; lzégl sin 0y,
ma =
= ( szt + 2lgsa — T’; - malily 600921)01
~ mal 1,67 8in 0y
- 2m1l1130.10.u sinfdy + A0, + 1}01 (14)

where 03, = 03 — 6,, )4, and Ip,, are the mass moment
of inertia of the wing and the flap, respectively, around
the wing axis of rotation. If the angles §, and 63 are
assumed to be small, then the linearized equation reduces
0

C. - (21;32 - %rz' - mz‘xlz) b2
= (Izsl + 21332 - 17‘2_’(2‘ - mz’n’z) 5]
+ M6, + k6, @15)



On the other hand, if the flaps are not deflected and the
wing and its flaps roll as a rigid body, Eq. (15) becomes

where I, is the mass moment of inertial of the composite
wing-flaps configuration without relative motion.

Equation (16) governs the wing-rock problem while
Eq. (15) govemns the linearized control of wing-rock prob-
lem by using a prescribed motion of the leading-edge

flaps.

COMPUTATIONAL SCHEMES

The computational scheme used to solve Egs. (1)-
(11) is an implicit, approximately-factored, centrally-
differenced, finite-volume scheme'*'3, Added second-
order and fourth-order explicit dissipation terms are used
in the difference equation on its right-hand side terms,
which represent the explicit part of the scheme. The Ja-
cobian matrices of the implicit operator on the left-hand
side of the difference equation are centrally-differenced
in space, and implicit second-order dissipation terms are
added for the scheme stability. The left-hand side spa-
tial operator is approximately factored and the difference
equation is solved in three sweeps in the £!, £2 and £
directions, respectively.

For the wing-rock problem, Eq. (16) is solved using
a four-stage Runge-Kutta scheme. Starting from known
initial conditions for @ and 4, the equation is explicitly
integrated in time in sequence with the fluid dynamics
equations, Egs. (1-11). Equation (16) is used to solve for
0, 0 and @ while Egs. (1-11) are used to solve for C,.
If the initial C, is nonzero, a case of asymmetric steady
flow at initial conditions, the initial values of # and 4 are
set equal to zero and the motion is initiated by the initial
rolling moment.

For the control of the wing-rock problem using flaps
oscillation, the motion of the faps; 6;,, 63, and 6, are
specified and Eq. (14) (nonlinear equation) or Eq. (15)
(linearized equation) is used to solve for §,, 01 and 0,
The fluid dynamics equations, Egs. (1)-(11), and the grid-
deformation equation, Eq. (13), are sequentially used to
solve for C,.

COMPUTATIONAL APPLICATIONS
AND DISCUSSION

Simulation of Wing-Rock-Motion
(Locally-Conical Flow)

A delta wing of sweep-back angle of 80°, at an angle
of attack of 35° and a Mach number of 1.4 is considered.
The wing has an elliptic section with sharpened leading
edges. The wing mass-moment of inertia about its x axis
is 0.02, the bearing damping coefficient is 0.2 and the
spring stiffness is 0.74. The unsteady Euler equations

are solved for locally-conical flows. The computational
grid is of 64 x64 x2 in the wrap around, normal and axial
directions, respectively. For these flow conditions, the
steady flow is asymmetric, and hence C, # 0 at t = 0.
Therefore, we set # = 67 = 0. The Euler equations of
fluid flow and of rigid-body dynamics are sequentially
integrated accurately in time with At = 0.0025. Figures
2 and 3 show the results of this case. Figure 2 shows the
time responses of #,, C, and C, and the corresponding
phase planes of 8, vz 8,, C, vz ¢, and C, vz 8,. The time
responses show the long time, t = 7, it takes to build up
the growing roll-angle response. The responses clearly
show that the §, and C, continuously increase in time
with increasing frequencies. The limit-cycle response is
reached at ¢ =~ 21 which is clearly shown on the phase
planes. The mean amplitude of 4, is —0.5°, its maximum
is 40° and its minimum is -41°, Figure 3 shows snap
shots of the surface-pressure coefficient and cross-flow
velocity at the instants corresponding to points 1 and 2
on Fig. 2. The strong asymmetric motion of the primary
vortices are clearly scen. Also, the surface-pressure-
coefficient response clearly shows the generation of the
restoring rolling moment to the wing motion. -

Active Control of Wing Rock Using
Leading-Edge Flaps Oscillation

The next step is to control the wing rock response
of the previous case. For this purpose a leading-edge
flap hinge is assumed to be at the 76% location of
the local-half-span length. The flaps motion is intro-
duced at ¢, = 13.02 when 6, = —4* and C, = 0.0.
The flaps motion is anti-symmetric and is given by
ozl(t) = Ogl.usinkf(t—t.) , where k; is the ﬂlp re-
duced frequency. With the aid of the previous values of
6;, C, and k of the wing (can be measured by sensors
to feed back the leading-edge flaps motion), we chose
021 max = -0.5° and k¢ = 6.7. Equation (15) for the wing-
flaps motion is sequentially integrated accurately in time,
with At = 0.0025, along with the Euler equations of fluid
flow, and the ND equation is used for the grid deforma-
tion. Figure 4 shows the time responses of 8, and C, for
the wing. It is clearly seen that 4, response is damped
within t - t, = 13 with a mean value of 5°, However,
the wing is still oscillating periodically around this mean
position with a small amplitude. Next, the flaps motion
is modified by dividing the amplitude 3,4,y by 1 + (t
- &) so that it decays with time. Figure S shows the
steady response of the wing at t = 30. The wing assumes
an equilibrium position of 5° without any oscillation. To
check that this is a stable equilibrium position, the wing
is disturbed at t = 40 with a small #,. Figure 5 also shows
the time responses of #, and C, after the disturbance con-
firming that the equilibrium position is stable. Figure 6
shows the phase planes of the whole response history of
¢ and C,. Figures 7-9 show the same results as those of
Figs. 4-6 when the same control is applied at t, = 23.27,
which is during the limit cycle response.



Simulation of Wing-Rock Motion (Three-
Dimensional Flow)

Next, we consider the three-dimensional-flow simula-
tion of the wing-rock problem.

A sharp-edged delta wing with a leading-edge sweep
of 80° is considered for the computational applications.
The angle of attack is set at 30° and the freestream Mach
number is chosen as 0.3 for low speed simulation. The
wing mass-moment of inertia about its axis is 0.285, the
bearings damping coefficient is 0.15 and the torsional
springs stiffness is 0.74. The unsteady Euler equations
are solved for the three-dimensional flows. The bound-
ary of the computational domain consists of a hemispher-
ical surface with it center at the wing trailing edge on
its line of geometric symmetry. The hemispherical sur-
face is connected to a cylindrical aftersurface with its
axis coinciding with the wing axis. The hemispherical
and cylindrical radii are two root-chord lengths and the
downstream, circular exit boundary is at two root-chord
lengths from the wing trailing edge. The grid consists of
48x32x32 grid points in the wrap-around, normal and
axial directions, respectively. The grid is generated in
the crossflow planes using a modified Joukowski transfor-
mation, which is applied at the grid-chord stations with
exponential clustering at the wing surface.

Since the steady flow solution is asymmetric, C,
in Eq. (16) is of non-zero value and hence Eq. (16) is
initially inhomogeneous. Att =0, we set §° = 6° = 0
and release the wing with its initial M, value as the
driving rolling moment. At t = At, Eq. (16) of the wing
dynamics is integrated to obtain #, and hence 4, and 6,
(At = 0.005). Then, Egs. (1-11) of the fluid flow are
integrated to obtain the components of the flowfield vector
and hence p and C,. Next, t is increased to 2At and the
sequential integration of the dynamics equation and the
fluid fow equations is repeated. The sequential solutions
are repeated until the limit-cycle amplitude response is
reached

In Fig. 10, we show the roll angle, rolling-moment
coefficient, C,, and normal-force coefficient, C,, versus
time. Significant transient responses develop in the time
range of t = 0 — 22, wherein the amplitudes of the re-
sponses increase and decrease. Thereafter, ¢t > 22, the
amplitudes of the responses continuously increase until
t =95 Att 295, the amplitudes and frequencies of
the responses become periodic reaching the limit-cycle
response. During the limit-cycle response, the maximum
roll angle, 8, m.x, is 10°, the minimum roll angle, 8, w;n,
is ~11° and the period of oscillation is 3.53, which cor-
responds to a frequency of 1.78. With At = 0.005, each
cycle of oscillation in the limit-cycle response requires
706 time steps. The shown responses, up to ¢t = 140,
required 28,000 time steps.

Next, we consider one cycle of the limitcycle
response and analyze the roll angle, rolling-moment-
coefficient and normal-force-coefficient responses to gain
physical insight of the wing-rock phenomenon. For this
purpose, we show in Fig. 11 8;,, C, and C, vz. t in
the range of ¢t = 135.19 — 138.72. This period of os-
cillation is marked by the numbers 1, 2, 3,4 and § in
Fig. 11, In the first quarter of the cycle (1 — 2), the roll
angle of the left side of the wing decreases from (° —
-11° and the wing rolls in the clockwise (CW) direction,
the rolling-moment coefficient increases and changes sign
from -0.057 — 0.0 — + 0.023 and the normal-force co-
efficient decreases and then increases from 2.68 — 2.65
— 2.75. It is important to notice that the rolling moment:
changes its sign which means that the rolling moment
during the first part of this quarter of the cycle is in the
CW direction (the same direction as the motion) and in
the second part of this quarter of the cycle is in the CCW
direction (the opposite direction of the motion). Hence,
the rolling moment increases the negative angle in the first
part and then it limits the growth of the roll angle in the
second part. In the second quarter of the cycle (2 — 3)
the roll angle increases from —11° — 0 and the wing rolls
in the CCW direction, the rolling-moment coefficient in-
creases and then decreases from +0.023 — 0.045 — 0.04
and the normal-force coefficients increases and then de-
creases from 2.75 — 3.0 — 2.84, The rolling-moment
coefficient is in the CCW direction (the same direction as
the motion). In the third quarter of the cycle (3—4) the
roll angle increases from 0 — 10° and the wing keeps its
rolling motion in the CCW direction, the rolling-moment
coefficient decreases and changes sign from +0.04 — 0
— —0.038 and the normal-force coefficient decreases and
then increases from 2.84 — 2,78 — 2.86. Again, it is no-
ticed that the rolling moment changes its sign from CCW
to CW directions and limits the roll angle growth.

In Figs. 12 and 13, we show snapshots at points 2 and
4, respectively; of the cross-flow-velocity vectors and the
static-pressure contours at the chord stations of 0.54, 0.63
and 0.79 and the surface-pressure coefficient at the chord
stations of 0.54 and 0.63. In Fig. 12, the primary vortex
on the right side is nearer to the upper wing surface than
the one on the left side. Moreover, the primary vortex
on the right is further away from the plane of geometric
symmetry in comparison to the onec on the lef. The
surface-pressure curves show large peaks on the right side
and that the surface-pressure difference on the right side
is larger than the one on the left side. This results into
a CCW rolling moment at this maximum negative roll
angle of -11°. In Fig. 13, the opposite process occurs;
the surface-pressure difference on the left side is larger
than the one on the right side and this results into a
CW rolling moment at this maximum positive roll angle
of +10°. These results are consistent with those of the
experimental data of Refs. 3 and 4.

In Fig. 14, we show the variations of the maximum
static pressure of the vortex cores of the primary vortices



on the left and right sides versus the roll angle for the
chord station of 0.54. The numbers on the figures cor-
respond to those in Fig. 11. Since the maximum static
pressure of the core is proportional to the vortex-core
strength, it is obviously seen that the primary vortex on
the right side has a greater strength at point 2 as compared
to that on the left side. The strength differential between
the right and left vortices along with the locations of the
vortex cores contributes substantially to the net total CCW
rolling moment which limits the negative growth of the
roll angle and reverses the wing motion. Similarly, it is
concluded that the strength differential between the left
and right vortices at point 4 substantially contributes to
the net total CW rolling moment which limits the positive
growth of the roll angle and reverses the wing motion.

In Fig. 15, we split the rolling-moment coefficient
into restoring and damping components similar to Kon-
stadinopoulos, et al.®. First, the rolling-moment coeffi-
cient C, is fitted using the following expansions in terms
of # and §:

Cr = a18 + asf + 020" + ay8%6
+050%0 + 0’ + ar0° + apf'd
+ ag0%0° + a,00%0° + a,,0'0 + a28° (AT

The coefficients a, — a,; are determined using a least-
squares fit. A comparison of the original (-e~) and fitted
(~) rolling-moment coefficients is shown in Fig. 15.
Next, we split the fitted-rolling-moment coefficient into a
restoring part, M,, and a damping part, M,, as follows:

M, = (al + a;6% + aué‘)ﬂ
+ (05 + a106?)6° + ar6® (18)

M; = (a: + 0402 + 030‘)0'
+ (ao + 0902)0‘3 + dné" 19)

In Fig. 15, we also show M, and @ versus time, and
My and @ versus time. Moreover, we show on these
figures the numbers 1, 2, 3, 4 and 5 which correspond
to the same numbers in Figs. 11 and 14. In the first
quarter of the cycle (1—2), the roll angle ¢ decreases
from 0 — ~11°, the restoring rolling moment becomes
negative during the first part and positive during the
second part and the damping rolling moment, which is
negative at point 1, increases during the first part and
becomes almost zero during the second part. It is very
interesting to notice that M, and M, are negative during
the first part and hence they are in the same direction
as the motion. During the second part, M, becomes
positive reaching its maximum at point 2 when 0, =
-11° and hence it limits the angle growth. During the
same second part, My becomes almost zero indicating a
loss of damping rolling moment. In the second quarter

of the cycle (2-—3), M, stays almost constant during the
first part and drops to zero in the second part when the
roll angle becomes 0°. During the same second quarter,
M, continuously increases from O to a maximum positive
value when the roll angle becomes 0. In the third quarter
of the cycle (34), a similar interaction of 4, M, and
M, as that of the first quarter (1-2) occurs except with
opposite signs. These conclusions are exactly similar
to those of Ref. 9. Hence, the loss of damping rolling
moment is responsible for the wing-rock motion.

CONCLUDING REMARKS

The multidisciplinary problem of wing-rock motion
and its active control has been simulated using the un-
steady, compressible, Euler equations; the Euler equa-
tion of rigid-body dynamiocs and the ND equations for
the grid deformation. The fluid flow Euler equations are
solved using an implicit, approximately factored, central-
difference, finite-volume scheme; rigid-body Euler equa-
tion is solved using a four-stage, Runge-Kutta scheme and
the ND equations are solved using an ADI scheme. Sim-
ulation of the wing-rock problem is obtained for a delta
wing which is mounted on an axle with torsional springs
and the axle is free to rotate in bearings with viscous
damping. The wing starts its motion under the effect of an
initial rolling moment due to the initially asymmetric flow
at zero roll angle and zero angular velocity. For the ac-
tive control of wing-rock motion, a tuned anti-symmetric
leading-edge flaps oscillation is used to achieve that pur-
pose. Also, it has been shown that the hysteresis re-
sponses of position and strength of the asymmetric right
and left primary vortices are responsible for the wing rock
motion. Moreover, it has also been shown that the loss
of acrodynamic damping rolling moment at the zero an-
gular velocity value is a main reason for the wing rock
motion. These conclusions are consistent with the pre-
vious findings of the experimental®* and computational®
research work.
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Fig. 10. Roll angle, roll-moment-coefficient and normal-force-coefficient response
for wing-rock motion; delta wing, a = 30°, Mo = 0.3, Ix = 0.285, ) =
0.15, k = 0.74, 6 = 6] = 0.
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Fig. 11. Time responses for wing-rock motion during the limit cycle response.
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Fig. 12. Snapshot at point 2 of crossflow velocity, static-pressure contours and
surface pressure for wing-rock motion.
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Fig. 13. Snapshot at point 4 of cross flow velocity, static-pressure contours and

surface pressure for wing-rock motion.
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Fig. 14. Hysteresis response of maximum static pressure of right and left primary
_vortices for wing-rock motion during the limit-cycle response. '
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Fig. 15. Splitting of rolling moment (C;) into restoring rolling moment (M;) and
damping rolling moment (My) for wing-rock motion during the limit-cycle response.









